

RFachbereich II
Mathematik - Physik - Chemie

01/2023

Ulrike Grömping

Implementing the stratification pattern for
space-filling, with dimension by weight tables
Implementieren des Stratification Patterns für Space-
Filling, mit Dimension-by-Weight-Tabellen
(englischsprachig)

Reports in Mathematics, Physics and Chemistry
Berichte aus der Mathematik, Physik und Chemie

ISSN (print): 2190-3913

ISSN (online): tbd

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

The reports are freely available via the Internet:
http://www1.bht-berlin.de/FB_II/reports/welcome.htm

01/2023, August 2023

© 2023 Ulrike Grömping
Implementing the stratification pattern for space-filling, with dimension by weight
tables
Implementieren des Stratification Patterns für Space-Filling, mit Dimension-by-
Weight-Tabellen (englischsprachig)

Editorial notice / Impressum

Published by / Herausgeber:
Fachbereich II
Beuth Hochschule für Technik Berlin
Luxemburger Str. 10
D-13353 Berlin
Internet: https://www.bht-berlin.de/ii

Responsibility for the content rests with the author(s) of the reports.
Die inhaltliche Verantwortung liegt bei den Autor/inn/en der Berichte.

ISSN (print): 2190-3913
ISSN (online): tbd

http://www1.bht-berlin.de/FB_II/reports/welcome.htm�
https://www.bht-berlin.de/ii�

Implementing the stratification pattern for space-filling, with
dimension by weight tables

Ulrike Grömping

August 10th, 2023, Berliner Hochschule für Technik

Abstract
Tian and Xu proposed a stratification pattern for assessing the stratification-related space-filling

qualities of stratum orthogonal arrays (SOAs) or generalizations of these (GSOAs). The pattern is
directly related to (G)SOA strength. The ideas behind the stratification pattern are explained, and
its implementation is presented. As a byproduct of the implementation, dimension by weight tables
provide more detailed insights than the stratification pattern alone. Tian and Xu’s presentation
relies on a contrast matrix that contains complex elements, unless the number of levels of the GSOA
is a power of 2. The complex contrasts can be replaced by a suitable real-valued coding, which
fosters an understanding of the pattern for readers who are unfamiliar with complex coding. As the
calculation of stratification patterns can be computationally demanding for moderately large arrays,
the implementation permits to specify upper limits for dimension and/or weight, in favor of saving
resources.

1 Introduction
He and Tang (2013) introduced so-called “Strong Orthogonal Arrays” (SOAs) and proposed their use for
the construction of Latin Hypercube Designs (LHDs) for computer experiments. Grömping (2023) gave
an overview of SOA constructions, changing the long version of the acronym to “Stratum Orthogonal
Arrays”, because SOAs are actually weak orthogonal arrays (OAs), typically of OA strength 1 only. This
paper also uses the term “Stratum Orthogonal Arrays”. The general idea of SOAs is to provide arrays for
computer experiments with quantitative variables, with many levels for each variable. Such arrays are
required to have good space-filling properties, and the introduction of SOAs is one systematic way for
guaranteeing space filling by certain stratification properties: He and Tang (2013) proposed SOAs with
SOA strength t (see below) for columns with st levels each (s a prime or prime power). An OA with
OA strength 2 would require s2t equireplicated level combinations for each pair of columns in st levels,
which is usually prohibitive. SOAs make weaker requests by considering coarsened columns obtained by
grouping column levels into strata of adjacent levels: st−1 strata of s adjacent levels each, st−2 strata of
s2 adjacent levels each, and so forth. Balance is then considered for stratum combinations. A classical
SOA of strength t for m columns at st levels each ensures st equireplicated combination strata for up
to t dimensions. For example, for s = 3 and t = 4, the SOA has 34 = 81 equireplicated strata in 4D
(3× 3× 3× 3), 81 equireplicated strata in 3D (9× 3× 3, 3× 9× 3, 3× 3× 9), 81 equireplicated strata in
2D (9× 9 or 3× 27 or 27× 3), and 81 levels (and thus 34 equireplicated strata in 1D).

Requesting SOAs of strength t to have st levels is restrictive; variations have been considered of strength 3
with only s2 levels (3−, introduced by Zhou and Tang 2019), strength 2 with 2D stratification properties
of strength 3 (2+, introduced by He, Cheng and Tang 2018), strength 2+, but also with s3 levels (2∗,
introduced by Li, Liu and Yang 2021); these can readily be extended to other strengths (e.g., strength
4− or 3+, as considered in Tian and Xu 2022 and Grömping 2023). Tian and Xu (2022) generalized
SOAs to GSOAs (G for “general”), by fully separating the strength from the power to which s is taken
for obtaining the number of levels.

3

Tian and Xu’s (2022) main contribution is the so-called space-filling pattern – called stratification pattern
in this paper – that has a close relationship to the generalized word length pattern of Xu and Wu (2001).
In a simulation study, Tian and Xu demonstrated that superior performance on the stratification pattern
was related to superior performance in evaluating a benchmark function for space-filling designs, the
8-dimensional borehole function included in the text book by Fang, Li and Sudjianto (2006). Their
proposed stratification pattern is therefore worth studying.

Both the papers by Xu and Wu (2001) and by Tian and Xu (2022) used complex coding. While complex
coding is often used for obtaining theoretical results, it cannot be used in data analysis. It is nevertheless
possible to carry out the relevant calculations in complex coding in most professional software products,
e.g., R. However, many software users including the present author are much more accustomed to
real-valued contrasts and can therefore better relate to a quality criterion if they understand how it can
be obtained from a real-valued model-matrix. For the GWLP by Xu and Wu (2001), it is well-known that
the results are invariant to the choice of a so-called normalized orthogonal coding: the chosen complex
coding is just one possible such choice. Tian and Xu’s (2022) use of the complex coding is more elaborate
than that of Xu and Wu (2001), because the complex coding for a basic number of levels s is used for
obtaining a coding for factors in sℓ levels, for an ℓ ≥ 1. This paper casts their coding as a special case of
a full-factorial-based coding, which fosters the understanding of how the coding works and at the same
time permits easy generalization to real-valued codings with exactly the same structural properties. The
implementation is available in the R package SOAs.

This paper deep-dives the stratification pattern and its underlying coding, presents an algorithm for
implementing the pattern and introduces a tool for a more detailed description of the stratification
structure, the so-called dimension by weight tables. The latter arises as a byproduct in the implementation.
Furthermore, the paper aims at popularizing GSOAs, whose introduction is another welcome contribution
by Tian and Xu (2022). The goal is to also make these results accessible to an audience that is less
theoretically-minded than that of Tian and Xu (2022).

The paper proceeds as follows: Section 2 provides notation and basic facts regarding orthogonal arrays
(OAs), the base s numeral system, general tools around coding in linear models and the GWLP as a
predecessor and close relative of the stratification pattern. Section 3 presents Tian and Xu’s (2022)
contrasts, casts them in the form of full-factorial-based contrasts, and introduces their naturally-arising
real-valued counterparts. Section 4 introduces Tian and Xu’s GSOAs and stratification patterns and
demonstrates equivalence between different variants of full-factorial-based coding of sℓ-level columns for
obtaining a stratification pattern. Section 5 presents the implementation of the stratification pattern via
full-factorial-based contrasts in R package SOAs. Small explanatory examples are placed throughout
the text. Section 6 presents further examples that illustrate in particular the benefit of separating out
dimensional contributions to the stratification patterns in dimension by weight tables, as well as the
relations between arrays with expanded / collapsed levels and between different representations sℓ1

1 = sℓ2
2

of the same number of levels. The discussion gives recommendations and points to opportunities for
further research. The code for the examples is available as online supplementary material.

2 Notation and basic facts
⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions. Except in the context of complex roots of the unity,
where it denotes the square root of −1, the letter i is used for indices. Matrices and vectors are denoted
with bold face capital or lower case letters, respectively. 1n and 0n denote a column vector of n identical
elements (1 or 0), In denotes the n-dimensional identity matrix, the superscript ⊤ denotes the transpose
of a matrix or vector, and ⊗ the Kronecker product. Column vectors with single digit integer elements

4

are parsimoniously written as a string of integers, e.g. 2 · 15 = 22222. The n×m matrix X is written as

X = (xi,j)i=1:n,j=1:m =

x11 . . . x1m

...
...

xn1 . . . xnm

 = (x1, . . . , xm) =

x(1)

...
x(n)

 .

Functions and unary or binary operators for scalars are applied to vectors element by element.

2.1 Orthogonal arrays and OA strength

An OA in n runs with m columns and si levels in the ith column is denoted as OA(n, m, s1×s2×. . .×sm, t),
where t stands for the strength of the OA (explicitly called OA strength in this paper, in order to set it
apart from the different concept of (G)SOA strength): OA strength t means that any tuple of t distinct
columns i1, . . . , it of the OA has si1 · . . . · sit

equireplicated level combinations. An OA in n runs is
saturated, if the main effects for its columns use n − 1 degrees of freedom. An OA is symmetric, if
s1 = s2 = · · · = sm = s; symmetric OAs are denoted as OA(n, m, s, t). A symmetric OA in n runs
with s a prime or prime power is regular, if all its columns can be obtained as linear combinations of
a few linearly independent basic columns from GF(s)n, e.g., the k columns of an n × k full factorial
design with n = sk for which all columns have the levels 0, . . . , s − 1. It is convenient to arrange the
basic columns in a systematic way. Typical arrangements are lexicographic order (slow changing first,
e.g., 000111222, 012012012) or fast changing first (e.g. 012012012, 000111222). Note that this is not an
exhaustive definition of regular OAs, but suffices for the purpose of this paper.

2.2 Projections, coarsening, and level expansion

Let D be an array with n rows and m columns. Any n× d sub-matrix of D is called a d-dimensional
projection of D. For brevity, dimensionality is denoted as 1D, 2D, . . ., or generally as dD.

Collapsing the levels 0, . . . , sℓ− 1 of a column in sℓ levels into only sk levels 0, . . . , sk − 1, k = 1, . . . , ℓ− 1,
can be achieved by applying the formula xsk = ⌊xsℓ/(sℓ−k)⌋, where xsℓ denotes the initial levels. Such
coarsening groups the initial sℓ levels into sk strata of adjacent levels.

Conversely, if n = λ · sℓ, λ ≥ 1, the columns of an n×m array in sk levels (k < ℓ) can be expanded to
λsℓ levels by

• replacing the λ · sℓ−k instances of the original level 0 with values 0, . . . , sℓ−k − 1 (λ instances each),
• replacing the λ · sℓ−k instances of the original level 1 with values sℓ−k, . . . , 2sℓ−k − 1 (λ instances

each),
• replacing the λ · sℓ−k instances of the original level 2 with values 2sℓ−k, . . . , 3sℓ−k − 1 (λ instances

each),
• . . .

• replacing the λ · sℓ−k instances of the original level sk − 1 with values (sk − 1)sℓ−k, . . . , sℓ − 1 (λ
instances each).

Of course, expanding levels is not restricted to a power of s: one can expand the array from sk to
λ′sk levels for any λ′ that divides λsℓ−k. In relation to (G)SOAs, expanding to a number of levels that is
not a power of s has the drawback that the resulting array is not a GSOA so that a stratification pattern
cannot be obtained in the usual way; however, it is of course possible to collapse levels to a power of s for
obtaining a relevant stratification pattern.

Example 1. The 18× 2 duplicated full factorial in two 3-level factors with columns 000111222000111222
and 012012012012012012 (i.e., s = 3, k = 1, ℓ = 2, λ = 2, sk = 3 levels) can be expanded to s2 levels, e.g.,
to 012345678012345678 and 036147258036741852 or to 120543786201435876 and 046257174138036258; the

5

latter expansion, like the two following level expansions, was obtained by optimizing the ϕp criterion for
space-filling (see Section 6) using the MDLEs function of R package SOAs. Choosing λ′ = λ = 2, the array
can be expanded to 6 levels instead, e.g., to 000222444111333555 and 135135135024024024. Or, choosing
λ′ = λs = 6, it can be expanded to 18 levels, e.g., to (4, 2, 5, 10, 11, 9, 14, 16, 12, 1, 0, 3, 8, 6, 7, 17, 13, 15)⊤

and (3, 6, 15, 2, 10, 17, 0, 11, 14, 1, 9, 13, 5, 8, 12, 4, 7, 16)⊤. Coarsening the levels of the resulting arrays to
three levels will return the ingoing columns in each of the above cases.

The example illustrates that expanding levels can be done in different ways; these can lead to results of
diverse quality. On the contrary, the coarsening of levels is a simple and unique activity.

2.3 The base s numeral system

Notations in this section are from Tian and Xu (2022). A non-negative integer a ∈ {0, 1, . . . , sℓ − 1} can
be represented by an ℓ-digit number in the base s numeral system. The ith digit can be obtained with the
function fi that is defined as fi(a) = ⌊a/sℓ−i⌋ mod s. For example, the number 5 in the base 3 numeral
system with ℓ = 4 digits is represented as 0012, as f1(5) = ⌊5/33⌋ mod 3 = f2(5) = ⌊5/32⌋ mod 3 = 0,
f3(5) = ⌊5/31⌋ mod 3 = 1 and f4(5) = ⌊5/30⌋ mod 3 = 2. The number in the decadic system can be
recovered from the base s representation via a =

∑ℓ
i=1 fi(a)sℓ−i.

The reverse scalar product between two numbers in the base s numeral system with ℓ digits is defined as
⟨a, b⟩ =

∑ℓ
i=1 fi(a)fℓ−i+1(b) = ⟨a, b⟩; for example, ⟨5, 5⟩ in the base 3 numeral system with ℓ = 4 digits is

0 · 2 + 0 · 1 + 1 · 0 + 2 · 0 = 0, whereas ⟨5, 5⟩ in the base 3 numeral system with only ℓ = 2 digits would be
1 · 2 + 2 · 1 = 4 (equivalent to 1, when considered modulo 3, as is suitable for most applications).

2.4 Model matrices

As was mentioned before, GSOAs are typically used for experimentation with quantitative variables.
However, investigation of their stratification behavior relies on a coding for qualitative factors. This
section introduces useful terminology around qualitative coding and model matrices.

For using a qualitative factor with s levels in a linear model, its s− 1 main effects degrees of freedom are
coded in separate model matrix columns, e.g. by dummy coding, polynomial coding or Helmert coding.
Xu and Wu (2001) used the afore-mentioned normalized orthogonal coding, which is now formally defined:

Definition 1 (Normalized orthogonal coding). An s × (s − 1) matrix C is a normalized orthogonal
contrast matrix for a factor in s levels, if all its columns have sum zero, are pairwise uncorrelated, and
have squared norm s.
A model matrix for a factorial model for n runs in m factors is in normalized orthogonal coding, if its first
column is 1n (for the intercept), the main effect for each factor is coded with a normalized orthogonal
contrast matrix, and the (s1 − 1) · . . . · (sd − 1) d-factor interaction columns for any dD projection are
obtained as the element-wise products of all combinations of main effect columns from d distinct factors.

Example 2. This paper uses three specific instances of normalized orthogonal coding for an s-level factor:
coding based on the sth root of the unity, which is used by Tian and Xu (2022), normalized orthogonal
polynomial coding and normalized orthogonal Helmert coding. Table 1 shows these codings for a 4-level
factor. Clearly, they all fulfill the requirement that columns are orthogonal and squared norms are 4.
Note that the squared norm of a complex column is the sum of the products between each element and
its complex conjugate, e.g., 12 + i · (−i) + (−1)2 + (−i) · i = 4 for the first column in Table 1. The squared
norm of a real-valued column is simply the sum of squares of its elements, e.g. 9/5 + 1/5 + 1/5 + 9/5 = 4
for the first column of the normalized orthogonal polynomial coding of Table 1.

Let F denote a full factorial design in m columns at s1 × · · · × sm levels, which has N =
∏m

i=1 si rows.
For the N ×N full model matrix M(F) in normalized orthogonal coding, M(F)⊤M(F) = NIN . The full

6

Table 1: Complex contrasts, normalized orthogonal polynomial contrasts and normalized orthogonal
Helmert contrasts for a 4-level factor.

Complex Polynomial Helmert
1 2 3 1 2 3 1 2 3

+1 +1 +1 −
√

9/5 1 −
√

1/5 −
√

2 −
√

2/3 −
√

1/3
+i −1 −i −

√
1/5 −1 √

9/5
√

2 −
√

2/3 −
√

1/3
−1 +1 −1 √

1/5 −1 −
√

9/5 0 √
8/3 −

√
1/3

−i −1 +i
√

9/5 1 √
1/5 0 0 √

3

model matrix in normalized orthogonal coding of an actual design D consists of the suitable selection
from the N rows of M(F); as this matrix is instrumental in assessing the properties of D, some notation
and terminology for it is now defined.

Definition 2 (Full model matrix). Let D denote an OA with n runs and m columns.

(i) The full model matrix for D can be written as

M = (M0, M1, . . . , Mm), (1)

where Md holds all columns for the
(

m
d

)
d-factor interaction effects, d = 0, . . . , m (i.e., M0 = 1n

and M1 holds all columns for main effects).
(ii) Within Md, d ≥ 1, the columns for a specific dD projection are called an effect column group.

Example 3. Table 2 shows the model matrix for the full factorial design F for two 4-level factors in
normalized orthogonal polynomial coding. The first column is the intercept column (not shown in the
table), columns 2 to 7 contain M1 (three columns for each factor, i.e., two effect column groups of columns
2 to 4 and 5 to 7, respectively), and columns 8 to 15 contain M2 (nine columns for the only two-factor
interaction, i.e., a single effect column group). Note that columns 2 to 15 of the matrix could be used as
a normalized orthogonal contrast matrix for a 16-level factor. The real-valued contrasts for factors in sℓ

levels are based on such full factorial model matrices for ℓ factors in s levels each. For using them in
place of Tian and Xu’s (2022) complex-valued coding, the column order has to be suitably adjusted (see
Section 3.2).

2.5 The GWLP and generalized minimum aberration

The GWLP is a tool for ranking factorial designs for qualitative factors via generalized minimum aberration
(GMA). It is included here for two reasons: Tian and Xu’s (2022) proposal for ranking (G)SOAs follows
the same spirit as GMA, and the stratification pattern and the GWLP are closely related and consist of
the same ingredients.

Once the model matrix M of Equation (1) is available for the OA, it is straightforward to obtain the
GWLP (A0, A1, . . . , Am). In the notation of this paper, Xu and Wu’s (2001) definition of Ad amounts to

Ad = 1⊤
n MdM⊤

d 1n

/
n2 =

∑
{i1,...,id}⊆{1,...,m}

a{i1,...,id}, (2)

i.e., n2Ad is the sum of the squared column sums of matrix Md. Ad can also be broken down into
projection specific contributions a{i1,...,id}, where a{i1,...,id} consists of only the summands belonging to
columns from the effect column group for factors i1, . . . , id.

According to Xu and Wu (2001), the Ad (and by a simple argument also the a{i1,...,id}) are invariant to

7

Table 2: Full model matrix for two 4-level factors in normalized orthogonal polynomial coding; the
intercept column, i.e. matrix M0(F), was omitted for saving space.

M1(F) M2(F)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−
√

9/5 1 −
√

1/5 −
√

9/5 1 −
√

1/5 9/5 −
√

9/5 3/5 −
√

9/5 1 −
√

1/5 3/5 −
√

1/5 1/5
−
√

9/5 1 −
√

1/5 −
√

1/5 −1 √
9/5 3/5 −

√
1/5 1/5

√
9/5 −1 √

1/5 −9/5
√

9/5 −3/5
−
√

9/5 1 −
√

1/5
√

1/5 −1 −
√

9/5 −3/5
√

1/5 −1/5
√

9/5 −1 √
1/5 9/5 −

√
9/5 3/5

−
√

9/5 1 −
√

1/5
√

9/5 1 √
1/5 −9/5

√
9/5 −3/5 −

√
9/5 1 −

√
1/5 −3/5

√
1/5 −1/5

−
√

1/5 −1 √
9/5 −

√
9/5 1 −

√
1/5 3/5

√
9/5 −9/5 −

√
1/5 −1 √

9/5 1/5
√

1/5 −3/5
−
√

1/5 −1 √
9/5 −

√
1/5 −1 √

9/5 1/5
√

1/5 −3/5
√

1/5 1 −
√

9/5 −3/5 −
√

9/5 9/5
−
√

1/5 −1 √
9/5

√
1/5 −1 −

√
9/5 −1/5 −

√
1/5 3/5

√
1/5 1 −

√
9/5 3/5

√
9/5 −9/5

−
√

1/5 −1 √
9/5

√
9/5 1 √

1/5 −3/5 −
√

9/5 9/5 −
√

1/5 −1 √
9/5 −1/5 −

√
1/5 3/5√

1/5 −1 −
√

9/5 −
√

9/5 1 −
√

1/5 −3/5
√

9/5 9/5
√

1/5 −1 −
√

9/5 −1/5
√

1/5 3/5√
1/5 −1 −

√
9/5 −

√
1/5 −1 √

9/5 −1/5
√

1/5 3/5 −
√

1/5 1 √
9/5 3/5 −

√
9/5 −9/5√

1/5 −1 −
√

9/5
√

1/5 −1 −
√

9/5 1/5 −
√

1/5 −3/5 −
√

1/5 1 √
9/5 −3/5

√
9/5 9/5√

1/5 −1 −
√

9/5
√

9/5 1 √
1/5 3/5 −

√
9/5 −9/5

√
1/5 −1 −

√
9/5 1/5 −

√
1/5 −3/5√

9/5 1 √
1/5 −

√
9/5 1 −

√
1/5 −9/5 −

√
9/5 −3/5

√
9/5 1 √

1/5 −3/5 −
√

1/5 −1/5√
9/5 1 √

1/5 −
√

1/5 −1 √
9/5 −3/5 −

√
1/5 −1/5 −

√
9/5 −1 −

√
1/5 9/5

√
9/5 3/5√

9/5 1 √
1/5

√
1/5 −1 −

√
9/5 3/5

√
1/5 1/5 −

√
9/5 −1 −

√
1/5 −9/5 −

√
9/5 −3/5√

9/5 1 √
1/5

√
9/5 1 √

1/5 9/5
√

9/5 3/5
√

9/5 1 √
1/5 3/5

√
1/5 1/5

the choice of normalized orthogonal coding for M. It is known that A0 = 1 (for the intercept column),
and that the sum of all Ad, d = 0, . . . , m, is s1 · . . . · sm/n for OAs with distinct rows. The GWLP is
related to the strength of an OA as follows: A1 = · · · = At = 0 and At+1 > 0 is equivalent to OA strength
exactly t (i.e., criteria for OA strength t + 1 are violated). Xu and Wu proposed to rank OAs by GMA,
i.e. to consider an OA D1 as better than an OA D2, if the leftmost element for which the GWLPs differ
is smaller for D1 than for D2.

3 Model matrices for arrays with ordered factors in sℓ levels
This section presents the Tian and Xu (2022) contrasts, relates them to a full-factorial-based model
matrix construction, and introduces real-valued contrasts based on that construction. It also introduces
Tian and Xu’s concept of weights and its use in model matrices.

3.1 Tian and Xu’s contrasts

Tian and Xu (2022) introduced complex-valued contrasts for factors with sℓ ordered levels that support
evaluation of the stratification behavior of an array, assuming that equireplication between equally-sized
coarser strata is more important than equireplication between equally-sized finer strata. Their contrasts
are available in the R package SOAs as contr.TianXu. An example of their contrasts for 16 levels with
s = 4 and ℓ = 2 is shown in Table 3, and a formal definition is given below. The definition uses the
representation of factor levels x = 0, . . . , sℓ − 1 and column numbers u = 1, . . . , sℓ − 1 in the base s

numeral system (see Section 2.3).

Definition 3. Let n = sℓ, with s ≥ 2 and ℓ ≥ 1 integers, and let ξ = e2πi/s denote the sth root of the
unity. An sℓ × (sℓ − 1) matrix C with rows labelled by levels x = 0, . . . , sℓ − 1 and columns numbered
with u = 1, . . . , sℓ − 1 is called Tian and Xu (2022) contrast matrix, if the element in the row for level x

and column u is given as the “character” χu(x) = ξ⟨x,u⟩ with ⟨•⟩ the reverse scalar product as defined in
Section 2.3.

Example 4. Table 3 shows the Tian and Xu coding for 16 level columns with s = 4 and ℓ = 2. The

8

Table 3: Tian and Xu contrast matrix (characters χu(x)) for a 16-level factor based on s=4 and ℓ=2.
Row labels: x values. Column labels: u values. The topmost header shows the column weights.

1 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 +i +i +i +i −1 −1 −1 −1 −i −i −i −i
2 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 −1 −1 −1
3 +1 +1 +1 −i −i −i −i −1 −1 −1 −1 +i +i +i +i
4 +i −1 −i +1 +i −1 −i +1 +i −1 −i +1 +i −1 −i
5 +i −1 −i +i −1 −i +1 −1 −i +1 +i −i +1 +i −1
6 +i −1 −i −1 −i +1 +i +1 +i −1 −i −1 −i +1 +i
7 +i −1 −i −i +1 +i −1 −1 −i +1 +i +i −1 −i +1
8 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1
9 −1 +1 −1 +i −i +i −i −1 +1 −1 +1 −i +i −i +i
10 −1 +1 −1 −1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 +1
11 −1 +1 −1 −i +i −i +i −1 +1 −1 +1 +i −i +i −i
12 −i −1 +i +1 −i −1 +i +1 −i −1 +i +1 −i −1 +i
13 −i −1 +i +i +1 −i −1 −1 +i +1 −i −i −1 +i +1
14 −i −1 +i −1 +i +1 −i +1 −i −1 +i −1 +i +1 −i
15 −i −1 +i −i −1 +i +1 −1 +i +1 −i +i +1 −i −1

fourth root of the unity is ξ = i =
√
−1. The second entry (u = 2) in the fourth row (x = 3) of the matrix

is one, because x = 3 is 03 in the base 4 numeral system with ℓ = 2 digits, u = 2 is 02 in that system, and
the reverse scalar product is ⟨x, u⟩ = 0 · 2 + 3 · 0 = 0, which yields ξ0 = 1 for the matrix entry. Likewise,
the first row of the contrast matrix, which contains the entries for level x = 0 (00 in the base 4 numeral
system), contains ones only. The 14th entry (u = 14) in the 15th row (x = 14) is also 1, because both u

and x are 32 in the base 4 numeral system, so that ⟨14, 14⟩ = 3 · 2 + 2 · 3 = 12, and ξ12 = ξ0 = 1.

3.2 Full-factorial-based contrasts

Calculating Tian and Xu’s (2022) contrasts according to the definition is simple and straightforward, if one
uses a software that is capable of handling complex values. For improving the understanding of how they
work, as well as for achieving generalizability to real-valued contrasts for calculating stratification patterns,
it is helpful to realize that Tian and Xu’s construction of a contrast matrix for sℓ levels corresponds
to obtaining a full factorial model matrix (without the intercept column) for ℓ factors in s levels each,
each coded in complex coding, and with columns arranged in a way convenient for the calculation of
stratification patterns. This construction is presented in the following proposition.

Proposition 1. Tian and Xu’s (2022) contrast matrix for sℓ level columns is equivalent to the following
construction:

(i) Denote sℓ × 1 basic factors as ej(ℓ) = 1sj−1 ⊗ (0, 1, . . . , s− 1)⊤ ⊗ 1sℓ−j , where j = 1, . . . , ℓ.
(ii) Fill columns 1, . . . , s− 1 of the sℓ × (sℓ − 1)contrast matrix with the main effect model matrix in the

complex coding for factor e1(ℓ) (ξ⟨x,1⟩ to ξ⟨x,s−1⟩ for level x). If ℓ = 1, return this matrix.
(iii) For j = 2, . . . , ℓ, proceed as follows:

(a) Set Cprior to denote the first sj−1 − 1 columns of the contrast matrix.
(b) For k = 1, . . . , s − 1, fill column ksj−1 with the k-th main effect column for ej(ℓ), and the

subsequent sj−1 − 1 columns with the element wise products of that column with each column
from Cprior.

(iv) Return the resulting matrix.

9

Proof. fj(x) contains the level of ej(ℓ).
For u = ksj−1, j = 1, . . . , ℓ, k = 1, . . . , s− 1, ⟨x, u⟩ = kfj(x), i.e., ξ⟨u,x⟩ are the s− 1 main effects columns
for ej(ℓ) in complex coding.
For j ≥ 2, the ⟨x, u⟩ for the sj−1 − 1 columns directly following column ksj−1 (k = 1, . . . , s − 1) are
kfj(x) +

∑j−1
i=1 fi(x)fℓ−i+1(u); hence, the model matrix columns contain the element-wise products of

column ksj−1 with columns 1, . . . , sj−1−1, in exactly that order. Thus, the construction of the proposition
is equivalent to Tian and Xu’s construction.

Definition 4 (Weight). ρ(u) = ⌈logs(u + 1)⌉, where logs denotes the base s logarithm, is called the
weight of column u.

The first sj − 1 columns have at most weight j. If a column has at most weight j, its column number
u can be represented in the base s numeral system using j digits (more digits are of course possible by
adding leading zeroes), and the column refers to a main effect or interaction effect among the first j

basic factors of Proposition 1 (i). The basic factors are sorted from slowest to fastest level changes: e1(ℓ)
changes levels between s strata of sℓ−1 adjacent levels only, e2(ℓ) changes levels between s2 strata of sℓ−2

adjacent levels, and so forth. Thus, the weights are related to fineness of stratification: Columns with
weight 1 consider the coarsest stratification of a factor with sℓ ordered levels, columns with weight 2
stratify into s2 strata of sℓ−2 adjacent levels each, and so forth.

The following example illustrates the construction of the proposition for Tian and Xu (2022) contrasts,
and their corresponding weights.

Example 5. Table 3 codes each basic factor e1(2) and e2(2) (ℓ = 2) in the complex-valued 4-level
contrasts of Table 1. The 16-level contrasts are then obtained from the full factorial in the two basic
factors, with the first three columns as the main effect columns for e1(2). These first three columns
have weight 1. When moving to weight 2 columns, these first three columns constitute Cprior. Column 4
is the first column with weight 2. It contains the first main effect column for e2(2). The subsequent
three columns contain the element-wise products of column 4 with the columns of Cprior. Column 8
(j = 2, k = 2) holds the second main effect column for e2(2), again followed by element-wise products of
that column with Cprior; finally, for j = 2, k = 3, column 12 is filled with the third main effect column of
the second factor, followed by the respective interaction columns. If ℓ were larger than 2, Cprior would
now be updated to the current matrix, and the next factor would be processed.

Proposition 2. Consider Tian and Xu’s complex contrasts for an sℓ level column, ℓ = 1, 2, Let u

denote the column number.

(i) u ∈ {1, . . . , s − 1}: Column u is a main effect column for e1(ℓ) in the full factorial construction
(slowest changing). It has up to s1 distinct values, with the same value assigned within each of s

strata of adjacent levels.
(ii) For ℓ ≥ 2: si−1 ≤ u ≤ si − 1, i = 2, . . . , ℓ: Column u of the full factorial construction is a main

effect column for ei(ℓ) or an interaction column involving ei(ℓ) and basic columns eν(ℓ), ν < i,
where the eν(ℓ) are slower-changing than ei(ℓ). It has up to si distinct values, with the same value
assigned within each of si strata of adjacent levels.

(iii) The exponent of s in the maximum number of distinct values according to (i) and (ii) is exactly the
weight ρ(u) = ⌈logs(u + 1)⌉.

Grömping (2022) proposed real-valued contrasts for sℓ levels that fulfill the properties stated in Proposi-
tion 2; as these were based on saturated orthogonal arrays according to the Rao-Hamming construction,
they were restricted to prime or prime power s (R function contr.Power in R package SOAs). Based on
the construction of Proposition 1, it is straightforward to obtain a more natural set of real-valued contrasts
as a replacement of Tian and Xu’s (2022) complex contrasts, if real-valued contrasts are desired: simply

10

replacing the complex contrasts in the construction with real-valued normalized orthogonal contrasts,
e.g., the normalized orthogonal contrasts of Example 2. These real-valued full-factorial-based contrasts
can be obtained for any integer s ≥ 2 and are available in R package SOAs as contr.FFbPoly and
contr.FFbHelmert, respectively.

Definition 5 (Full-factorial-based contrasts). Proposition 1 gives rise to general contrast definitions for
factors in sℓ levels:

(i) Contrasts obtained by the construction of Proposition 1 with any normalized orthogonal s-level
coding – be it the complex coding of the proposition or any other suitable replacement – are called
full-factorial-based contrasts.

(ii) The contrasts of Proposition 1 by Tian and Xu (2022) are called full-factorial-based complex
contrasts.

(iii) Full-factorial-based contrasts that use the normalized orthogonal polynomial or the normalized
orthogonal Helmert s-level coding are called full-factorial-based polynomial contrasts or full-factorial-
based Helmert contrasts, respectively.

Example 6. Tables 4 and 5 show full-factorial-based Helmert contrasts for 4, 8, 9 or 16 levels, while
Table 3 shows the full-factorial-based complex contrasts for 16 levels.
Different from the full model matrix of Definition 2 (see e.g. Table 2 for a full factorial in two 4-level
factors), the columns are systematically arranged from low to high weight, according to the construction
rule of Proposition 1. The weights are 122 (4 levels), 1223333 (8 levels), 11222222 (9 levels), and
111222222222222 (16 levels).
Note that the weights of Table 2 are also in ascending order, as is always the case for the conventional
model matrix with ℓ ≤ 2 factors. However, the column order in Table 2 deviates from that of full-factorial-
based coding: the full-factorial-based polynomial coding for a 16-level column, based on Table 2, consists
of columns 2,3,4,5,8,9,10,6,11,12,13,7,14,15,16, in that order.
The contrasts for 16-level columns in Tables 3 and 5 have been based on 16 = 42 (s = 4, ℓ = 2). They
could have also been based on 16 = 24, in analogy to 4 and 8 levels. In the latter case, each single column
would consist of −1/+1 values (even for full-factorial-based complex contrasts, because the second root
of the unity is −1). In this case, the column weights would be 122333344444444. Clearly, the weights
must be considered in conjunction with the choice for s, in case of different possibilities.

Table 4: Full-factorial-based Helmert contrast matrices for 4-level, 8-level and 9-level columns. The
topmost header row shows the column weights.

4-level 8-level 9-level
1 2 1 2 3 1 2
1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
−1 −1 +1 −1 −1 +1 −1 +1 +1 −1 −

√
3/2 −

√
1/2 −

√
3/2 3/2

√
3/4 −

√
1/2

√
3/4 1/2

−1 +1 −1 −1 −1 +1 +1 −1 −1 +1 −
√

3/2 −
√

1/2
√

3/2 −3/2 −
√

3/4 −
√

1/2
√

3/4 1/2
+1 −1 −1 −1 +1 −1 −1 +1 −1 +1 −

√
3/2 −

√
1/2 0 0 0 √

2 −
√

3 −1
+1 +1 +1 −1 +1 −1 +1 −1 +1 −1 √

3/2 −
√

1/2 −
√

3/2 −3/2
√

3/4 −
√

1/2 −
√

3/4 1/2
+1 −1 −1 −1 −1 +1 +1 √

3/2 −
√

1/2
√

3/2 3/2 −
√

3/4 −
√

1/2 −
√

3/4 1/2
+1 −1 −1 +1 +1 −1 −1 √

3/2 −
√

1/2 0 0 0 √
2

√
3 −1

+1 +1 +1 −1 −1 −1 −1 0 √
2 −

√
3/2 0 −

√
3 −

√
1/2 0 −1

+1 +1 +1 +1 +1 +1 +1 0 √
2

√
3/2 0 √

3 −
√

1/2 0 −1
0 √

2 0 0 0 √
2 0 2

11

Table 5: Full-factorial-based Helmert contrast matrix for 16 levels (s=4, ℓ=2). The topmost header shows
the column weights.

1 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−
√

2 −
√

2/3 −
√

1/3 −
√

2 2 √
4/3

√
2/3 −

√
2/3

√
4/3 2/3

√
2/9 −

√
1/3

√
2/3

√
2/9 1/3

−
√

2 −
√

2/3 −
√

1/3
√

2 −2 −
√

4/3 −
√

2/3 −
√

2/3
√

4/3 2/3
√

2/9 −
√

1/3
√

2/3
√

2/9 1/3
−

√
2 −
√

2/3 −
√

1/3 0 0 0 0 √
8/3 −

√
16/3 −4/3 −

√
8/9 −

√
1/3

√
2/3

√
2/9 1/3

−
√

2 −
√

2/3 −
√

1/3 0 0 0 0 0 0 0 0 √
3 −

√
6 −

√
2 −1

√
2 −

√
2/3 −

√
1/3 −

√
2 −2 √

4/3
√

2/3 −
√

2/3 −
√

4/3 2/3
√

2/9 −
√

1/3 −
√

2/3
√

2/9 1/3
√

2 −
√

2/3 −
√

1/3
√

2 2 −
√

4/3 −
√

2/3 −
√

2/3 −
√

4/3 2/3
√

2/9 −
√

1/3 −
√

2/3
√

2/9 1/3
√

2 −
√

2/3 −
√

1/3 0 0 0 0 √
8/3

√
16/3 −4/3 −

√
8/9 −

√
1/3 −

√
2/3

√
2/9 1/3

√
2 −

√
2/3 −

√
1/3 0 0 0 0 0 0 0 0 √

3
√

6 −
√

2 −1
0 √

8/3 −
√

1/3 −
√

2 0 −
√

16/3
√

2/3 −
√

2/3 0 −4/3
√

2/9 −
√

1/3 0 −
√

8/9 1/3
0 √

8/3 −
√

1/3
√

2 0 √
16/3 −

√
2/3 −

√
2/3 0 −4/3

√
2/9 −

√
1/3 0 −

√
8/9 1/3

0 √
8/3 −

√
1/3 0 0 0 0 √

8/3 0 8/3 −
√

8/9 −
√

1/3 0 −
√

8/9 1/3
0 √

8/3 −
√

1/3 0 0 0 0 0 0 0 0 √
3 0 √

8 −1
0 0 √

3 −
√

2 0 0 −
√

6 −
√

2/3 0 0 −
√

2 −
√

1/3 0 0 −1
0 0 √

3
√

2 0 0 √
6 −

√
2/3 0 0 −

√
2 −

√
1/3 0 0 −1

0 0 √
3 0 0 0 0 √

8/3 0 0 √
8 −

√
1/3 0 0 −1

0 0 √
3 0 0 0 0 0 0 0 0 √

3 0 0 3

3.3 Using full-factorial-based contrasts for arrays with m factors in sℓ levels

The single weight ρ(u) for the contrast column u indicates that the respective main effect model matrix
column is constant within sρ(u) strata of adjacent levels. The matrix M1 consists of sℓ − 1 columns for
each factor, with weights directly inherited from the contrast weights.

A model matrix column in Md, d > 1, is a product of main effect columns from d different factors. Thus,
it relates to crossed strata obtained from the d contributing columns u1, . . . , ud (with ui referring to the
within-effect column position), and the number of strata to be considered in d-dimensional space is, of
course,

∏
i=1,...,d sρ(ui) = s

∑
i=1,...,d

ρ(ui). This makes it natural to define the weight of a vector of column
numbers as the sum of individual weights:

Definition 6 (Weight for a model matrix column, restated from Tian and Xu 2022). Let m denote a
column in the sub-matrix Md of the model matrix M from Equation (1) from full-factorial-based coding
for an OA with n runs and m columns in sℓ levels each.
Let u = (u1, . . . , ud)⊤ denote the vector of column positions within their respective main effect column
group for the columns that were multiplied to obtain m.
The weight assigned to the column m is ρ(u) =

∑d
i=1 ρ(ui), with ρ(ui) according to Definition 4.

Example 7. The weights shown in Tables 4 and 5 apply to main effect column groups, i.e., the
n× (m · (sℓ − 1)) matrix M1 for an array with m factors in sℓ levels each consists of m column groups
with sℓ − 1 columns each, and the weights within each such group are as stated above.
Columns of M2 have at least weight 2 (two main effect columns with weight 1 each) and at most weight
2ℓ (two main effect columns with weight ℓ each). Considering full factorial-based contrasts based on two
4-level factors (s = 4, ℓ = 2, like in Tables 3 and 5), the maximum weight for the columns of M2 is thus 4.

4 GSOAs and the stratification pattern
As was mentioned before, in an OA of OA strength at least two with factors in sℓ levels, each 2D projection
would consist of equireplicated copies of all conceivable s2ℓ distinct level combinations. (G)SOAs typically

12

have OA strength 1 only (and need not even have that strength). For evaluating their behavior in
d dimensions, one considers coarsened columns, as was explained in the introduction for classical SOAs.
As was mentioned before, Tian and Xu (2022) proposed GSOAs that consider sℓ levels in combination
with strength t, where ℓ and t need not coincide. These are now defined.

Definition 7 (SOA and GSOA). An array in n = λsℓ runs with m columns at sℓ levels each is a
GSOA(n, m, sℓ, t), t ≤ m, if all possible stratifications into st = su1 · . . . · sut strata, ui integers with
0 ≤ ui ≤ ℓ and u1 + . . . + ut = t, are equireplicated.
If t = ℓ, the GSOA is an SOA.

For clarity, sℓ is always written as such, even when using specific numbers, so that it is clear from the
notation whether, e.g., 81 is considered as 34 or as 92, as this difference will be relevant for the calculation
of the stratification pattern. Note that the definition of GSOAs does not guarantee the existence of st

strata in lower dimensions: for ℓ < t, 1D (and perhaps even 2D) stratification is equireplicated (implied by
balance in equireplication in higher dimensions), but may yield fewer than st strata (see also Example 13).
For ℓ > t, a GSOA with sℓ levels of strength t can, e.g., be obtained by expanding the levels of an
SOA(n, m, st, t), assuming that sℓ divides n.

Example 8. A GSOA(81, 4, 34, 3) has been created from an SOA(81, 4, 33, 3) by expanding the levels of
each column to 81 (assigning the three possible choices for each original level in random order). The
ingoing SOA was obtained by the Li et al. (2021) construction from the OA(27, 4, 3, 3) that is available in
R package DoE.base (Grömping 2018) as L27.3.4. This GSOA will be revisited in Examples 9 and 10
for illustrating the stratification pattern and its interpretation.

4.1 Stratification pattern and dimension by weight table

Tian and Xu (2022) introduced the stratification pattern (the space-filling pattern of their article) as a
tool to assess a (G)SOAs strength and stratification behavior, in the same spirit as the GWLP assesses
an OAs strength and balance properties. The ingredients for obtaining the stratification pattern are
normalized squared norms of the model matrix columns of Equation (1). For the GWLP of Xu and Wu
(2001), these were summed separately for each dimension of the projection, i.e., there is a sum for each d,
d = 0, 1, . . . , m. For the stratification pattern, they are summed separately by the column weights instead.
Of course, one can also sum them separately by combinations of dimension and weight.

Definition 8 (Stratification pattern and dimension by weight table). Let M denote the model matrix
based on full-factorial-based contrasts for an array with n runs and m columns at sℓ levels each. Let m
denote a column in Md, d = 1, . . . , m, and let u(m) = (u1, . . . , ud)⊤ denote the vector of column positions
within their main effect column group for the columns that were multiplied to obtain m.

(i) The elements of the stratification pattern (S1, . . . , Sm·ℓ) are

Sj =
min(m,j)∑

d=max(1,⌈j/ℓ⌉)

∑
m a column of Md

and ρ(u(m)) = j

(1⊤
n m)2/n2 =

min(m,j)∑
d=max(1,⌈j/ℓ⌉)

sdj , (3)

where sdj is short-hand for the dD inner sum.
(ii) A dimension by weight table arranges the summands sdj in (3) in a table with a row for d = 1, . . . , m

and a column for j = 1, . . . , m · ℓ. Non-existent combinations (e.g., j = 2 with d = 3) are marked
with “.”.

The definition has been stated for any full-factorial-based coding, which requires the equivalence of all
those codings. This equivalence is shown in Section 4.2.

13

Table 6: Dimension by weight table of contributions to GWLP and stratification pattern from the
GSOA(81, 4, 34, 3). Row labels: dimension d. Column labels: weight j. Bottom margin: stratification
pattern.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GWLP

1 0 0 0 0 0
2 . 0 0 20 32 80 96 252 480
3 . . 0 0 8 112 368 1248 2808 5184 7776 7776 25280
4 . . . 0 8 20 104 504 1872 6372 17280 40176 77760 116640 139968 104976 505680

Sum 0 0 0 20 48 212 568 2004 4680 11556 25056 47952 77760 116640 139968 104976 531440

Example 9. Table 6 shows the stratification pattern (bottom row), split up by contributions from
different dimensions, for the GSOA(81, 4, 34, 3) of Example 8. There are four rows for 1D to 4D (m = 4),
and there are 16 columns for weights j = 1, . . . , m · ℓ. The right margin shows the the sum of the row
elements, which coincides with the GWLP (easy to verify with function GWLP of R package DoE.base).
The boundaries for d in Definition 8 start at 1 for j = 1, . . . , 4, at 2 for j = 5, . . . , 8, and so forth, and go
up to j for j = 1, 2, 3 and up to 4 for all larger j. The “.” in the table indicate impossible combinations of
d and j.

The following results from Tian and Xu (2022) are provided for convenience.

Lemma 1 (Tian and Xu). Consider a GSOA with n runs and m columns in sℓ levels each, and let
(S1, . . . , Sm·ℓ) denote its stratification pattern.

(i) The GSOA has stratification strength t, if and only if S1 = · · · = St = 0.
(ii) If the GSOA has distinct rows,

∑m·ℓ
j=1 Sj = smℓ/n− 1.

The sum of the elements is (of course) the same as for the GWLP elements, except for omitting the 0th
element that is normally included in the GWLP but not in the stratification pattern.

Example 10. We see from Table 6 that the GSOA has strength 3, and that strength 4 is violated
because there are two-dimensional projections for which 34 equireplicated strata are not achieved. The
stratification pattern for the underlying SOA(81, 4, 33, 3) is (0, 0, 0, 20, 32, 140, 232, 616, 1056, 1440,
1728, 1296). S4 of the GSOA is inherited from the underlying SOA; 2D stratification with weight 4 can
of course not involve any single column with 81 levels.
The sum of all pattern entries for the GSOA is 814/81− 1 = 531440, i.e., one less than the sum of all
GWLP elements (for the GWLP, including A0 = 1 increases that sum by 1). It is much larger than the
sum 274/81− 1 = 6560 for the underlying SOA; additional contributions from level expansion start for
weight 5 and become larger with increasing weight. Example 14 in Section 6 deep-dives the relation
between coarser (16) and finer (64) levels for a different case.

Tian and Xu (2022) proposed the use of a GMA like criterion for stratification patterns; this is now
defined as “minimum stratification aberration” (MSA):

Definition 9 (Stratification aberration and MSA (Tian and Xu)). Let an array D with n runs and m

columns in sℓ levels each have the stratification pattern S(D) = (S1, S2, . . . , Sm·ℓ).

(i) Let D1 and D2 be two arrays with n runs and m columns in sℓ levels each. D1 has better
stratification aberration than D2, if the leftmost element for which S(D1) and S(D2) differ is smaller
for D1 than for D2.

(ii) For a combination of n, m, s, ℓ, D has minimum stratification aberration (MSA) among all arrays in
n runs with m columns in sℓ levels each, if there is no array with the same n, m, s, ℓ that has better
stratification aberration.

The definition (of course) implies that arrays with larger strength are always better than arrays with

14

smaller strength. Note that the definition restricts comparison to arrays with comparable properties
(same n, m, s, ℓ). In particular, naïve comparisons between arrays with different numbers of levels sℓ may
be misleading. Furthermore, where s and ℓ can not be uniquely derived from the number of levels, one
has to state them with the reported stratification pattern; for example, s = 9 with ℓ = 2 instead of s = 3
with ℓ = 4 would have been possible in Example 9, and would have yielded a very different stratification
pattern with S2 > 0. Section 6 contains a detailed comparison between different choices for s and ℓ for a
different example (Example 14, 16 = 42 = 24, 64 = 43 = 26).

4.2 Equivalent use of general full-factorial-based contrasts

Definition 8 used general full-factorial-based contrasts, and it remains to be shown that these are indeed
equivalent to full-factorial-based complex contrasts by Tian and Xu (2022). It is in fact straightforward
to show that using general full-factorial-based contrasts, w.l.o.g. full-factorial-based polynomial contrasts,
yields the exact same stratification pattern and dimension by weight table: While individual squared
norms of columns of Md may depend on the choice of a normalized orthogonal coding, it is known that
the a{i1,...,id} of Equation (2) are invariant to that choice. Because of the structure of full-factorial-
based contrasts, one can consider the sℓ-level columns as full factorials in ℓ s-level columns, and the
(sℓ − 1)d columns for a dD interaction can be subdivided into (

∑ℓ
i=1 sℓ−i)d groups of (s− 1)d columns

for s-level effect interactions. The weights within such s-level effect interactions are constant. Thus, the
contributions to dimension by weight tables and stratification patterns are invariant to the choice of
normalized orthogonal coding in the full-factorial-based contrasts. This result is stated in a proposition:

Proposition 3. The stratification pattern and the dimension by weight table are invariant to the specific
choice of full-factorial-based complex contrasts in Definition 8.

Note that there are further possibilities for suitable contrasts, e.g., the power contrasts proposed in
Grömping (2022).

5 Implementation of the stratification pattern
In the R package SOAs (Grömping 2023b), the full-factorial-based complex contrasts are implemented in
function contr.TianXu, the full-factorial-based polynomial contrasts in function contr.FFbPoly, and
full-factorial-based Helmert contrasts in function contr.FFbHelmert. Function Spattern calculates the
stratification pattern, and function dim_wt_tab allows to extract and display a dimension by weight
table, like in Table 6, from a pattern created by function Spattern. The first subsection presents the
algorithm used for implementing the stratification pattern, the second subsection discusses resources.

5.1 The algorithm

The main steps of the algorithm are presented in Table 7. The table keeps some mathematical symbols
used in this paper, and switches to names of variables from the code (in fixed width font) for objects
that only occur during computations. Note that the algorithm presented here is substantially more
efficient than the earlier version reported in Grömping (2022).

The algorithm requires the design D and the base s as inputs. As calculations can be resource intensive
for moderate or large arrays, and one is often only interested in

• low-dimensional projections (i.e., small d),
• weights j that are not much larger than t or ℓ,

the user can specify upper limits for the dimension (dmax ≤ m) and the weight (jmax ≤ mℓ). Per default,
jmax = 4, and dmax = jmax. If a stratification pattern has been calculated with an upper limit dmax < m

15

Table 7: Algorithm for calculating the stratification pattern.
Action From Details

1 Initializations
D, s, jmax, dmax provided compatibility of all inputs is ascertained
n, m ← D numbers of rows and columns
ℓ ← s, D (D has sℓ level columns)
M1 ← s, D n×m · (sℓ−1) model matrix of main effects columns, coded

with full-factorial-based contrasts
uwt ← m, s, ℓ m · (sℓ − 1) vector of within effect weights for the columns

of M1
contrib_list ← dmax, jmax list; initialize as dmax vectors of length jmax, NA entries

2 Combination preparations
picks ← m, dmax list of dmax matrices for 1D to dmaxD interactions; each

column holds a tuple of factor IDs to be considered for an
interaction

cs ← m, jmax, ℓ list of dmax matrices for partitions of jmax into d =
1, . . . , dmax non-zero summands; summands exceeding ℓ are
reduced to ℓ, and dominated partitions are removed

for dim_now in 1 to dmax: loop over dimensions
colnums ← cs[[dim_now]],

s
list of lists of dim_now vectors of column IDs of M1 for
the first dim_now factors, restricted to those with combined
weight at most jmax (a list of vectors for each column of
cs[[dim_now]])

colnums ← colnums matrix with dim_now columns; all dim_now-tuples obtained
by applying expand.grid to each inner list, binding the
resulting data frames together, removing duplicates, and
coercing the result into a matrix

combiweights ← colnums, uwt list of dmax generic weight vectors for dD interactions, d =
1, . . . , dmax; the jth element of the weight vector for dD
refers to the column of Md that is obtained as the product
of the M1 columns indexed in the jth row of the matrix
colnums

3 Calculations
for dim_now in 1 to dmax: loop over dimensions

pat_dim ← jmax jmax vector of missing values for collecting contributions
from dim_nowD projections for weights 1 to jmax

picks_now ← picks picks[[dim_now]]
cs_now ← cs cs[[dim_now]]

for j in 1 to ncol(picks_now) loop over projections
colnums ← cs_now,

picks_now[,j],
s

obtained from factors in picks_now[,j] in the same way
as the colnums in part two was obtained from factors 1 to
dim_now (this implies that the same generic weights can be
used)

for i in 1 to nrow(colnums): loop over dim_nowD tuples
contrib ← M1,

colnums[i,]
squared norm of element-wise product of M1 columns

pat_dim ← contrib add contrib to the combiweights[[dim_now]][i]th ele-
ment; initialize it with this value, if it is still missing

contrib_list[[dim_now]] ← pat_dim/n2

4 Return results
aus ← contrib_list sum of all elements of contrib_list (the stratification

pattern)
aus ← aus,

contrib_list
attach dimension by weight matrix compiled from
contrib_list as an attribute

aus → return

16

on dimension, it must be interpreted w.r.t. that restriction for weights j = dmax + 1, . . . , mℓ, whereas an
upper limit on the weight has no impact on pattern entries for weights up to jmax.

For making calculations feasible in terms of run time and memory use, the most critical step is to limit
the calculation of columns of Md, d = 1, . . . , dmax to those that are actually needed for the requested
jmax. The algorithm handles this task for a particular d by using the dth element of the list cs of part 2
in Table 7 (cs_now of part 3 in Table 7) that contains all relevant compositions of jmax into d nonzero
summands, with maximum element reduced to ℓ and dominated elements removed, where applicable (see
Example 11 for illustration).

Example 11. For d = 2 and jmax = 4, 4 = 1 + 3 = 2 + 2 = 3 + 1.

For ℓ = 3, this yields the columns of the matrix cs_now as 13, 22 and 31. The columns of M2 to be
considered for the pair of factors 1 and 2 thus consist of

• columns with weight 1 for factor 1 (i.e., the first s− 1 main effect columns) and weight up to 3 for
factor 2 (i.e., the first s3 − 1 main effects columns)

• columns with weight up to 2 for both factors (i.e., the first s2 − 1 main effects columns each)
• locums with weight up to 3 for factor 1 (the first s3 − 1 main effects columns) and weight 1 for

factor 2 (the first s− 1 main effects columns).

The different bullets contain duplications of each other: the columns with weight up to 1 in both factors
are part of all three bullets. The current implementation separately creates all such sets of column
combinations and subsequently removes the duplicates.

For ℓ = 2, the maximum individual weight is two, so that the threes must be reduced to twos. Thus, the
initial 13, 22 and 31 become 12, 22, and 21. As 12 and 21 are dominated by 22 (they do not imply any
columns that are not implied by 22), they are eliminated from the 2nd element of the list cs in part 2 of
Table 7, which therefore consists of the single column 22.

5.2 Use of computer resources

Run time with full-factorial-based coding has been studied for a few 64 run and 125 run examples.
All calculations were conducted on a single CPU on a Windows 10 machine with 32GB RAM and an
i7-12700T processor with 1.40 GHz.

For an SOA(64, 5, 42, 2), run times with unlimited weights (i.e., jmax = mℓ = 15) were dominated by the
number of contributions from dmax-factor interactions that contribute to the stratification pattern for the
highest-dimensional projection, which can be calculated as

(
m

dmax

)
· 15dmax (considering dmax = 2, . . . , 5,

with run times of 0.1, 1.8, 14.6, 51.2 seconds). For a GSOA(64, 5, 43, 2), the
(

m
d

)
portion of the number

of contributions remains unchanged, but the number of columns increases by the factor (63/15)d, i.e.,
one would expect run times (with unlimited weights) to increase to approximately 2.3, 134.1, 4547.2,
66905.2 seconds, possibly with some additional increase or decrease for overhead. Actual durations were
about 1.9, 121, 3857.2 seconds for dmax = 2, 3, 4, which is slightly faster than the calculated times. Though
low dimensional projections are the most important ones, choosing a suitable maximum weight jmax is a
better way of limiting computer resources: According to Proposition 2, for a matrix of full-factorial-based
contrasts for sℓ levels, the number of main effect model matrix columns with weight up to j ≤ ℓ is
sj − 1 (out of sℓ − 1), so that limiting the overall weight by jmax can have a strong effect on run times
via reducing the number of columns to consider in part 3 of the algorithm. Furthermore, limiting the
weight to jmax also implies a limit of dmax = jmax. Unlimited weights imply dramatically larger run
times versus limited weights, e.g., more than an hour for dmax = 4 with unlimited weights, compared to
less than five minutes for jmax = 8 for the 64-level design in 64 runs (see Table 8). Besides the larger
effect on run time, limiting the weight and thereby only implicitly limiting dimension has the benefit

17

that S1, . . . , Sjmax are not reduced by omitting relevant projections. For relatively large desired jmax

and interest in dmax < jmax dimensions only, it may nevertheless be beneficial to limit dimension to a
maximum lower than the implicit limit.

Table 8 reports run times for 64 run arrays and 125 run arrays under various conditions. The table
shows results averaged over single runs of three different variants of full-factorial-based coding (complex,
polynomial and Helmert). For the 64 run arrays, the pattern was calculated based on s = 2 or s = 4,
with the entry for weight j referring to balance in sj strata in up to j dimensions. Run times for s = 2
were obtained with maximum weights 8, 10, 12, 14, 16; these correspond to the same finest stratification
as for the s = 4 case with weights 4 to 8, but higher maximum dimension. Generally, for the 64 run case,
run times up to weight 8 (16 for 2-level) were acceptable, with everything except 2-level with weight 16
running in less than four minutes. For the 125 run array, run times for weights above 6 exceeded five
minutes, and the run time for 125 levels with weight 8 even exceeded two hours. The agreement between
the different full factorial based codings was relatively close: R2 values in pairwise regressions of log times
over all the timings of Table 8 are at least 99.97%, and 90%-confidence ellipses for the intercept/slope
pair contain the (0/1) for all three pairwise regressions between log run times. This was the reason to
treat the different codings as replicates and report their average; for s = 2, the different codings are in
fact replicates.

The implementation shown in Table 7 creates the entire matrix M1 in part 1 (except where jmax < ℓ,
which should be rare), but proceeds with computations of selected columns only for model matrices
Md, d > 1 in part 3. In an initial implementation, R’s model.matrix function was used for creating the
entire model matrix up to dimension dmax. While this is convenient for the programmer, it caused serious
memory problems for various designs that can still be handled with the approach chosen now, particularly
when a (G)SOA has many levels. Even the main effect’s model matrix in part 1 of the algorithm is no
longer calculated with the model.matrix function, because a simpler creation via a loop is faster and
can be limited to columns relevant under a (theoretically relevant) weight restriction jmax < ℓ.

Note that it would be possible to apply the algorithm of Table 7 using other suitable codings. Limited
testing with relatively small examples showed little difference in run times between the variants of
full-factorial-based coding, including the complex coding, but a run time advantage over the power coding
of Grömping (2022). Although there is little difference between the variants of full-factorial coding,
paired t-tests of log run times between the three studied variants show a p-value of .07 for the complex
versus the normalized Helmert coding; when excluding the s = 2 timings for which both codings are
identical, the p-value goes down to slightly less than .05. There seems to be a tendency, also found in
more detailed timing inspections not included in this paper, that the complex coding is slightly slower
than the real-valued codings, particularly the Helmert variant. Therefore, the full-factorial-based Helmert

Table 8: Run times in seconds from 64 run arrays with 5 columns (studied with s=2 and s=4) and a 125
run array with 6 columns, averaged over three variants of full factorial coding. The row labels show the
maximum weight (for s=4 or s=5) or half the maximum weight (for s=2).

64 runs 125 runs
s=2 s=4 s=5

16 levels 64 levels 16 levels 64 levels 25 levels 125 levels
4 0.69 1.11 0.33 0.46 2.74 3.75
5 2.75 6.20 1.37 2.59 17.20 31.29
6 8.48 31.83 4.15 12.92 90.41 228.85
7 20.84 140.50 11.14 55.82 393.86 1469.79
8 40.05 547.77 24.49 216.97 1369.88 8261.88

18

coding has been made the standard coding used in function Spattern of R package SOAs. It may be
possible to speed up timings further by using sparse matrices from the Matrix package (Bates, Mächler
and Jagan 2022), as interaction matrices from Helmert coding contain many zeroes (see, e.g., Table 5).

Memory usage was not studied systematically. A run time example revealed that memory constraints
can limit relevant calculations with the implementation of Table 7: For a GSOA(64, 5, 43, 2), memory
failure occurred with dmax ≥ 5 and unlimited weight (i.e., jmax = 5 · 3 = 15 for s = 4 or jmax = 5 · 6 = 30
for s = 2). The failure is related to too many relevant model matrix columns due to large values in cs,
arising from a large number of levels combined with large weights. Such problems could in principle be
addressed by an implementation with a lazy version of the expand.grid function (e.g., as provided by
Evans 2020) or other forms of using iterators; however, such an approach sacrifices speed for memory and
has so far not been pursued. For most applications, it is perfectly acceptable and absolutely recommended
to specify a maximum weight, and most run time studies have been conducted with specified maximum
weights.

6 Examples
All calculations have been done with R, and the code is available online. Besides the stratification pattern,
the ϕp criterion (Morris and Mitchell 1995) is used for the assessment of space-filling:

ϕp(X) =

 ∑
{i,j}⊂{1,...,n},i̸=j

d(x(i), x(j))−p

1/p

. (4)

For large p, the ϕp criterion can mimic the maximin distance criterion well, and the R package SOAs uses
the criterion with p = 50 for optimization of space filling within constructions, via level permutations in
construction matrices. Small values of ϕp imply better space-filling. The ϕp value is a good supplement to
the stratification pattern, because it captures a different aspect of space-filling: comparing stratification
patterns between arrays with different numbers of levels for each column, e.g., the GSOA(81, 4, 34, 3) of
Example 9 and the SOA(81, 4, 33, 3) from which it was created, is of limited use, because the different
numbers of levels per column between the arrays are not directly reflected in the pattern as an advantage
for the array with more levels, but rather as a disadvantage because the sum of pattern entries is larger
for the array with more levels ((S1, . . . , S6) = (0, 0, 0, 20, 32, 140) for the SOA, as compared to the pattern
of Table 6). The ϕp values do capture the fineness / coarseness of columns: ϕp = 0.175 for the SOA and
ϕp = 0.06 for the GSOA, i.e. expanding the levels substantially reduces (=improves) the ϕp value.

Example 12 (Published patterns). Sun, Wang and Xu (2019) provided four different arrays with three
25-level columns in 25 runs. Their stratification patterns have mℓ = 3 · 2 elements and are given in
Table 9, together with their ϕp values. The sum of pattern elements is 253/25 − 1 = 624. The fourth
array is the only one that achieves SOA strength 2. This example reproduces the patterns published by
Tian and Xu (2022) (their Example 4 provides S1 to S4 for each of these arrays). The ϕp values for the
arrays are reasonably similar.

Table 9: Stratification patterns and ϕp values of the four 25-level arrays of Sun et al. (2019)

S1 S2 S3 S4 S5 S6 ϕp

D1 0 0.64 26.08 85.92 191.36 320 0.111
D2 0 1.84 22.48 89.52 190.16 320 0.092
D3 0 0.96 25.12 86.88 191.04 320 0.091
D4 0 0 28 84 192 320 0.1

19

Example 13 (Extreme case ℓ=1). The stratification pattern for the OA(81, 8, 3, 4), available in R package
DoE.base as L81.3.8, is (0, 0, 0, 22.42, 23.51, 18.96, 9.88, 5.23). As ℓ = 1, the stratification pattern
has exactly m = 8 elements, and its elements for j = 1, . . . , m coincide with the corresponding GWLP
elements, as was already noted by Tian and Xu 2022 for OAs with ℓ = 1. S1 = S2 = S3 = 0 means that
the stratification strength is 3, which implies equireplication for up to s3 = 27 strata for 1D, 2D and
3D. Of course, there are only three strata in 1D and only nine strata in 2D, because more is simply not
possible. This is an extreme example that underlines what a zero in the stratification pattern means:
Sj = 0 if and only if all existing stratifications with up to sj strata are equireplicated, and Sj = 0 does
not imply that sj strata exist in all dimensions up to j.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1: The first two columns of the two 64 run designs of Table 10: filled dots represent the 16-level
design, circles the 64-level design. Axis labels: levels of the 16-level design; the corresponding 4 levels of
the 64-level design are placed centered at these, dotted grid lines separate their positions.

We now explore the impact of collapsing or expanding levels, as well as of using larger or smaller values
of s, in case different choices are possible.

Example 14 (16 versus 64 levels, and s=2 versus s=4). An SOA(64, 5, 43, 3) was constructed from a 64 run
OA(64, 6, 4, 3), using the construction by He and Tang (2013) (R function SOAs). This SOA(64, 5, 43, 3)
(s = 4, ℓ = 3) can also be considered as a GSOA(64, 5, 26, 4) (s = 2, ℓ = 6). An array with 16 levels per
column was obtained by collapsing the levels of each column; this was done for being able to compare the
two arrays. Comparing arrays with different fineness / coarseness of columns is of interest, because one
might choose to expand levels of an SOA for improved 1D refinement, as well as to collapse levels for
saving resources when calculating a stratification pattern (see Table 8 for run times). The 16-level array
is an SOA(64, 5, 24, 4) as well as a GSOA(64, 5, 42, 3). Thus, both arrays can be handled using s = 4
(ℓ = 3 or ℓ = 2, respectively) or using s = 2 (ℓ = 6 or ℓ = 4, respectively).

20

Table 10: Dimension by weight tables of contributions to stratification pattern, considering s=4 and
s=2, for an SOA with 64 level columns and a version with columns collapsed to 16 levels only. Weights
have been limited to 6 or 12, respectively, corresponding to considering up to 4096 strata. Row labels:
dimension d. Column labels: weight j. Bottom margin: stratification pattern.

16 levels, ϕp=0.1000
s=4 s=2

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0
2 . 0 0 30 . . . 0 0 0 0 6 8 16
3 . . 0 90 180 270 . . 0 0 3 21 43 67 98 108 120 80
4 . . . 15 60 630 . . . 0 2 5 10 31 96 197 420 624
5 0 90 0 0 1 3 15 59 132 318
Sum 0 0 0 135 240 990 0 0 0 0 5 32 62 117 209 364 672 1022

64 levels, ϕp=0.0231
s=4 s=2

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 . . . 0 0 0 0 0 0
2 . 0 0 90 180 360 . 0 0 0 0 18 24 68 80 120 160 160
3 . . 0 90 360 1890 . . 0 0 3 21 45 105 256 510 1080 2000
4 . . . 15 60 1050 . . . 0 2 5 10 35 152 361 1068 2512
5 0 90 0 0 1 3 17 69 198 628
Sum 0 0 0 195 600 3390 0 0 0 0 5 44 80 211 505 1060 2506 5300

Figure 1 shows the first two columns of the array, i.e., a 2D projection. It serves to further understanding
of differences between the coarser and the finer array, regarding the stratification pattern as well as more
general space-filling behavior. The filled points in the figure represent the array with 16 levels, the open
points the array with 64 levels. For each array, each of the 256 squares bounded by the thin solid lines
contains at most one point. For the 16 level array, 1D projections have 16 distinct points only, whereas
the 1D projections for the 64 level array have 64 distinct levels. The deterioration from collapsing levels
is reflected by the ϕp value, which is much smaller (=better) for the 64 level array (ϕp = 0.0231) than for
the 16 level array (ϕp = 0.100). This difference in ϕp values exemplifies that expanding levels of an SOA
to an LHS will often be desirable not so much because of stratification properties but because of other
space-filling criteria. Of course, the finer levels also lead to better stratification at least in 1D, but this is
not easy to detect from the stratification pattern, except for the 1D row of the dimension by weight table.

Table 10 provides a breakdown into dimensions for the first six or twelve elements of the stratification
pattern for both arrays. For s = 2, the maximum weight has been doubled in order to consider the same
maximum number of 4096 strata for both choices of s. The sum of the overall 15 or 10 (s = 4) or 30 or 20
(s = 2) elements of the stratification pattern is 16777215 for the 64-level array and 16383 for the 16 level
array. Although the 64-level array does not have worse stratification behavior than the 16-level array,
its stratification pattern has larger elements, which underscores that absolute entries of a stratification
pattern must not be compared between arrays of different coarseness. Let us consider some entries of the
dimension by weight table in more detail:

• The entries sdj are the same for the finer (bottom of Table 10) and the coarser (top of Table 10)
array, as long as j ≤ ℓcoarser + d − 1 (i.e., j ≤ 2 + d − 1 for s = 4 and j ≤ 4 + d − 1 for s = 2),
because the stratification possibilities for such weights j do not permit more than sℓcoarser strata
(i.e., 16 strata) for a single column even for the finer array. *For entries, where this is possible, finer
levels can imply larger values:

21

• For d = 2 and s = 2, both arrays show perfect balance for weights up to j = 5, as all 2× 16, 4× 8,
8×4 and 16×2 stratifications exhibit perfect balance, containing 2 elements in each of the 32 strata,
like in Figure 1. The entry s26 = 6 for 16 levels arises from an imbalance in 8 × 8 stratification
for all six pairs among the first four array columns, also like in Figure 1. The s26 entry of the
dimension by weight table for 64 levels is larger, because there are additional imbalances of 2× 32
and 32× 2 stratifications that cannot occur for 16 levels.

Let us now turn to comparing the s = 4 and s = 2 perspectives. With s = 4, both arrays have strength 3,
implying that all stratifications into 4, 16 and 64 strata by crossing columns with numbers of levels a
power of s = 4 (!) are fully balanced. In 2D, this means that stratification into 4× 16 and 16× 4 strata
are fully balanced (one element each). It does not mean that stratification into 8 × 8 strata is fully
balanced: we already saw in Figure 1 that this is not the case (half of the 64 8× 8 strata are empty, while
the other half contain two elements each). This is not in the way of s23 = 0 for s = 4, but the arrays
cannot have s26 = 0 for s = 2, because weight j for s = 4 and weight 2j for s = 2 correspond to the
same number of strata, but s = 2 requires to consider more types of stratifications for that number of
strata: For 16 levels and d = 2, we have only 8× 8 in addition to the variants for s = 4, for 64 levels we
additionally have 2× 32 and 32× 2 that are relevant for s = 2 and j = 6 but not for s = 4 and j = 3.
Hence, it is not surprising that the proportion of the total for the weights representing up to 4096 strata
is larger for s = 2 (2483/16383=15.16% for 16 levels, 9711/16777215=0.06% for 64 levels) than for s = 4
(1365/16383=8.33% for 16 levels, 4185/16777215=0.02% for 64 levels).

Example 14 has illustrated how the stratification pattern

• depends on the choice of s and ℓ,
• depends on the fineness (64 levels) or coarseness (16 levels) of columns for structurally comparable

arrays (related by level expansion or collapsing),
• allows refined understanding by looking at the underlying dimension by weight table,
• does not reflect all aspects of space-filling, but should be supplemented by other metrics such as ϕp.

7 Discussion
The GSOAs by Tian and Xu (2022) are a natural extension of SOAs. They resolve the unfortunate
forced link between stratification strength and number of levels that existed in SOAs and was previously
overcome by defining exceptions via qualifiers such as +, − or ∗. Their use for computer experiments
benefits from favorable space-filling properties, and the stratification pattern (called space-filling pattern
by Tian and Xu 2022) captures the stratification aspect of space-filling. The stratification pattern is a
relative of the long-standing GWLP (Xu and Wu 2001): both sum the same squared sums of model matrix
columns, but group the sums by different criteria (dimension for the GWLP, weight for the stratification
pattern).

The stratification pattern has been implemented in the R package SOAs. Dimension by weight tabulation
of the summands of the stratification pattern is a by-product of the implementation and contributes to an
improved understanding of an array’s stratification behavior. Due to being based on coding for qualitative
factors, obtaining stratification patterns is very resource intensive for arrays with large numbers of levels;
an upper limit for the weights (and thus implicitly for the projection dimensions considered) keeps
computing resources in check. There may be the potential that future implementations by the group of
Hongquan Xu are faster for situations that are particularly difficult for the model-matrix based approach
taken in this paper; this hope is based on the relation between function GWLP on the one hand and
function length2 to length5 on the other hand for obtaining GWLP elements in R package DoE.base.
GWLP follows Hongquan Xu’s approach using Krawtchouk polynomials, whereas the length* functions
follow the model matrix approach of this paper; these functions complement each other: GWLP is faster

22

for arrays that have many columns, the length* functions are faster for arrays that have many rows and
few levels per column. As model matrices for (G)SOAs typically have very many columns, the benefit
from an approach analogous to GWLP should be substantial.

Space-filling behavior is a multifaceted phenomenon, and there are further aspects to consider in addition
to stratification behavior. For example, using the discrepancy metric ϕp (smaller=better, see Equation (4))
in conjunction with the stratification pattern might be a good idea. For computer experiments with
quantitative variables, it can be sensible to expand the levels of an SOA to obtain a GSOA with more
levels, ideally an LHD. For assessing the properties of such an expanded array, it is proposed to obtain
the stratification pattern for the underlying SOA, and to assess improved space-filling of the GSOA via
other criteria, e.g., the ϕp criterion. In this way, run time for obtaining the space-filling pattern can be
kept as low as possible, without loosing relevant information.

So far, the constructions implemented in the R package SOAs permit improvements by level permutation
w.r.t. the ϕp criterion, using an algorithm proposed by Weng (2014). The ϕp criterion can be cheaply
calculated, and Weng’s algorithm keeps searches over level permutations manageable. Improvements
w.r.t. the stratification pattern would also be desirable, and level permutations have been observed
to have an impact on the stratification pattern for some constructions (e.g., for the Zhou and Tang
2019 construction), but not for many others. For achieving favorable stratification behavior, improved
incorporation of stratification aspects into the development of construction algorithms may be a more
promising way than resource-intensive optimization via level permutation. The stratification pattern may
help to instigate research in that direction.

Acknowledgments. Robert Carnell gives a home to the R package SOAs on github. Comments by
anonymous reviewers prompted a re-inspection of the complex contrasts, which led to replacing the
initially-chosen power contrasts (Grömping 2022) with full-factorial-based contrasts in the R-package
SOAs.

References
Bates, D., Mächler, M. and Jagan, M. (2022). Matrix: Sparse and Dense Matrix Classes and Methods.
R package version 1.4-1. In R Core Team (2023). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Evans, B. (2020). lazyExpandGrid.R. Function available at https://gist.github.com/r2evans/e5531cba
b8cf421d14ed.

Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments. Chapman
and Hall/CRC, Boca Raton, Florida.

Grömping, U. (2018). R package DoE.base for Factorial Experiments. Journal of Statistical Software 85,
Issue 5.

Grömping, U. (2022). Implementation of the stratification pattern by Tian and Xu via power coding.
Report 3/2022, Reports in Mathematics, Physics and Chemistry, Department II, BHT.

Grömping, U. (2023a). A unifying implementation of stratum (aka strong) orthogonal arrays. Computa-
tional Statistics and Data Analysis 183, 1-28.

Grömping, U. (2023b). SOAs: Creation of Stratum Orthogonal Arrays. R package version 1.4. In R Core
Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. https://github.com/bertcarnell/SOAs.

23

https://gist.github.com/r2evans/e5531cbab8cf421d14ed
https://github.com/bertcarnell/SOAs

He, Y., Cheng, C.S. and Tang, B. (2018). Strong orthogonal arrays of strength two plus. The Annals of
Statistics 46, 457-468.

He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer
experiments. Biometrika 100, 254-260.

Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications.
Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-1478-6.

Kuhfeld, W. (2010). Orthogonal Arrays. https://support.sas.com/techsup/technote/ts723b.pdf. Last
accessed: July 04, 2022.

Li, W., Liu, M.-Q. and Yang, J.-F. (2021). Construction of column-orthogonal strong orthogonal arrays.
Statistical Papers https://doi.org/10.1007/s00362-021-01249-w.

Liu, H. and Liu, M.-Q. (2015). Column-orthogonal strong orthogonal arrays and sliced strong orthogonal
arrays. Statistica Sinica 25, 1713-1734.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of
Statistical Planning and Inference 43, 381-402.

Owen, A. (1994). Orthogonal Arrays for Computer Experiments, Visualizations, and Integration in high
dimensions. A C library available at http://lib.stat.cmu.edu/designs/oa.c.

Shi, L. and Tang, B. (2020). Construction results for strong orthogonal arrays of strength three. Bernoulli
26, 418-431. https://doi.org/10.3150/19-BEJ1130

Sun, F., Wang, Y. and Xu, H. (2019). Uniform projection designs. The Annals of Statistics 47, 641-661.

Tang, B. (1993). Orthogonal Array-Based Latin Hypercubes. Journal of the American Statistical
Association 88, 1392-1397.

Tian, Y. and Xu, H. (2022). A minimum aberration-type criterion for selecting space-filling designs.
Biometrika 109, 489-501.

Weng, J. (2014). Maximin Strong Orthogonal Arrays. Master’s thesis at Simon Fraser University under
supervision of Boxin Tang and Jiguo Cao.

Xu, H. and Wu, C.F.J. (2001). Generalized minimum aberration for factorial designs. The Annals of
Statistics 29, 1066-1077.

Zhou, Y.D. and Tang, B. (2019). Column-orthogonal strong orthogonal arrays of strength two plus and
three minus. Biometrika 106, 997-1004. https://doi.org/10.1093/biomet/asz043

24

https://doi.org/10.1007/978-1-4612-1478-6
https://support.sas.com/techsup/technote/ts723b.pdf
https://doi.org/10.1007/s00362-021-01249-w
http://lib.stat.cmu.edu/designs/oa.c
https://doi.org/10.3150/19-BEJ1130
https://doi.org/10.1093/biomet/asz043

	Introduction
	Notation and basic facts
	Orthogonal arrays and OA strength
	Projections, coarsening, and level expansion
	The base s numeral system
	Model matrices
	The GWLP and generalized minimum aberration

	Model matrices for arrays with ordered factors in s^\ell levels
	Tian and Xu's contrasts
	Full-factorial-based contrasts
	Using full-factorial-based contrasts for arrays with m factors in s^\ell levels

	GSOAs and the stratification pattern
	Stratification pattern and dimension by weight table
	Equivalent use of general full-factorial-based contrasts

	Implementation of the stratification pattern
	The algorithm
	Use of computer resources

	Examples
	Discussion
	References

