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Implementation of the stratification pattern by Tian and Xu via
power coding

Ulrike Grömping

October 03, 2022, Berliner Hochschule für Technik

Abstract
Recently, Tian and Xu proposed a stratification pattern for assessing the qualities of stratum

orthogonal arrays (SOAs) or generalizations of these (GSOAs). The stratification pattern is directly
related to (G)SOA strength. Tian and Xu’s presentation relies on a contrast matrix that contains
complex elements, unless the number of levels of the GSOA is a power of 2. The complex contrasts can
be replaced by a suitable real-valued coding, and this paper introduces power coding for that purpose.
The paper explains the ideas behind the stratification pattern and presents its implementation with
the help of power coding. As a byproduct of the implementation, dimension by weight tables provide
more detailed insights than the stratification pattern alone. As the calculation of stratification
patterns can be computationally demanding for moderately large arrays, the implementation permits
to specify upper limits for dimension and/or weight, in favor of saving resources.

1 Introduction
He and Tang (2013) introduced so-called “Strong Orthogonal Arrays” (SOAs) and proposed their use
for the construction of Latin Hypercube Designs (LHDs) for computer experiments. Grömping (2022a)
gave an overview of SOA constructions to date, changing the long version of the acronym to “Stratum
Orthogonal Arrays”, because SOAs are actually weak orthogonal arrays (OAs), typically of OA strength 1
only. This paper also uses the term “Stratum Orthogonal Arrays”.

The general idea of SOAs is to provide arrays for computer experimentation with quantitative variables,
with many levels for each variable. Such arrays are required to have good space-filling properties, and
the introduction of SOAs is one systematic way for guaranteeing space filling by certain stratification
properties: He and Tang (2013) proposed SOAs with SOA strength t (see below) for columns with
st levels each (s a prime or prime power). An OA with OA strength 2 would require s2t equireplicated
level combinations for each pair of columns in st levels, which is usually prohibitive. SOAs make weaker
requests by considering coarsened columns obtained by grouping column levels into strata of adjacent
levels: st−1 strata of s adjacent levels each, st−2 strata of s2 adjacent levels each, and so forth. Balance
is then considered for stratum combinations. A classical SOA of strength t for m columns at st levels
each ensures st equireplicated strata for up to t dimensions. For example, for s = 3 and t = 4, the SOA
has 34 = 81 levels (and thus 34 equireplicated strata in 1D), 81 strata in 2D (9× 9 or 3× 27 or 27× 3),
81 strata in 3D (9× 3× 3, 3× 9× 3, 3× 3× 9) and 81 strata in 4D (3× 3× 3× 3).
Requesting SOAs of strength t to have st levels is restrictive; variations have been considered of strength 3
with only s2 levels (3−, introduced by Zhou and Tang 2019), strength 2 with 2D stratification properties
of strength 3 (2+, introduced by He, Cheng and Tang 2018), strength 2+, but also with s3 levels (2∗,
introduced by Li, Liu and Yang 2021); these can readily be extended to other strengths (e.g., strength
3+ or 4−, as considered in Grömping 2022a and Tian and Xu 2022). Tian and Xu (2022) generalized
SOAs to GSOAs (G for “general”), by fully separating the strength from the power to which s is taken
for obtaining the number of levels.

Tian and Xu’s (2022) main contribution is the so-called space-filling pattern – called stratification pattern
in this paper – that has a close relationship to the generalized word length pattern of Xu and Wu (2001).
In a simulation study, Tian and Xu demonstrated that superior performance on the stratification pattern
was related to superior performance in evaluating a benchmark function for space-filling designs, the
8-dimensional borehole function included in the text book by Fang, Li and Sudjianto (2006). Their
proposed stratification pattern is therefore worth studying.
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Both the papers by Xu and Wu (2001) and by Tian and Xu (2022) based their results on complex
coding. For the Xu and Wu (2001) paper, it is well-known that results are unchanged for other types of
so-called normalized orthogonal coding. The present paper shows that results by Tian and Xu (2022)
can equivalently – and even more conveniently – be obtained using a newly introduced coding for
factors in s` levels: power coding based on power contrasts. Using power coding, this paper presents an
implementation of the stratification pattern introduced by Tian and Xu (2022), which is available in R
package SOAs (relevant functions: contr.Power, Spattern and dim_wt_tab). The second purpose of
this paper is to spread the word on GSOAs and stratification patterns and make them accessible to a
less theoretically-minded audience; interspersed examples illustrate more formal definitions in order to
support this audience.

The paper proceeds as follows: Section 2 provides notation and basic facts regarding orthogonal arrays
(OAs). Section 3 presents general tools around coding in linear models and explains the GWLP as a
predecessor and close relative of the stratification pattern, before introducing the power contrasts in
Section 3.3. Section 4 introduces Tian and Xu’s GSOAs and stratification patterns, and Section 5 explains
the implementation of the stratification pattern via the power contrasts in R package SOAs. Section 6
presents examples, and the discussion points to opportunities for further research. The code for all
examples is available as supplemental online material1.

2 Notation and basic facts
b·c and d·e denote the floor and ceiling functions. Except in the very narrow context of complex roots of
the unity, where it denotes the square root of −1, the letter i is used for indices. Matrices and vectors are
denoted with bold face capital or lower case letters, respectively. 1n and 0n denote a column vector of n
identical elements (1 or 0), In denotes the n-dimensional identity matrix, > denotes the transpose of a
matrix or vector, and ⊗ the Kronecker product. Column vectors with single digit integer elements are
parsimoniously written as a string of integers, e.g. 2 · 15 = 22222. The n×m matrix X is written as

X = (xi,j)i=1:n,j=1:m =

 x11 . . . x1m
...

...
xn1 . . . xnm

 = (x1, . . . ,xm) =

 x(1)

...
x(n)

 .

Functions and unary or binary operators for scalars are applied to vectors element by element.

2.1 Galois fields
A Galois field GF (s) (see e.g. Appendix A of Hedayat et al. 1999) is a finite field over s elements, where
s is a prime or an integer power of a prime. For the purpose of this paper, the elements of Galois
fields are denoted as the integers 0 to s − 1, and they come with addition (neutral element 0) and
multiplication (neutral element 1). If s is a prime, modulo arithmetic can be used. For non-prime s, one
has to use suitable addition and multiplication tables that fulfill the requirements for a field (see, e.g.,
Grömping 2022a for the tables for s = 4, 8, 9). Addition w.r.t. a Galois field GF (s) will be denoted as +s,
multiplication as ·s.

2.2 Orthogonal arrays and OA strength
An OA in n runs withm columns and si levels in the ith column is denoted as OA(n,m, s1×s2×. . .×sm, t),
where t stands for the strength of the OA (explicitly called OA strength in this paper, in order to set it
apart from the different concept of (G)SOA strength): OA strength t means that any tuple of t distinct
columns i1, . . . , it of the OA has si1 · . . . · sit equireplicated level combinations. An OA in n runs is
saturated, if the main effects for its columns use n − 1 degrees of freedom. An OA is symmetric, if
s1 = s2 = · · · = sm = s; symmetric OAs are denoted as OA(n,m, s, t). A symmetric OA in n runs with
s a prime or prime power is regular, if all its columns can be obtained as linear combinations of a few
linearly independent basic columns from GF(s)n. (This is not an exhaustive definition of regular OAs,
but suffices for the purpose of this paper.)

The following lemma provides the so-called Rao-Hamming construction that can be obtained for s-level
columns with s a prime or prime power (see e.g. Section 3.4 of Hedayat et al.).

1The URL is https://prof.bht-berlin.de/fileadmin/prof/groemp/downloads/SupplSpattern.zip.
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Lemma 1 (Rao Hamming construction). Let s be a prime or prime power, and n = sk, k ≥ 2.

(i) The basic vectors e1(k) = (0, 1, . . . , s− 1)> ⊗ 1sk−1 to ek(k) = 1sk−1 ⊗ (0, 1, . . . , s− 1)> on GF(s)n,
together with all their linear combinations with coefficient vectors from GF(s)k whose first non-zero
element is 1, form a regular saturated OA.

(ii) Let R(s, k) denote the OA of (i). It can be constructed recursively as follows:

• R(s, 2) = e1(2), e2(2), e1(2) +s e2(2), . . . , e1(2) +s (s− 1) ·s e2(2).
• For i > 2, R(s, i) = (R(s, i− 1)⊗1s, ei(i), ei(i)�s R(s, i− 1), . . . , ((s− 1) ·s ei(i))�s (R(s, i−

1)⊗ 1s), where �s denotes the element wise multiplication of a column with each column of
the subsequent matrix w.r.t. to GF (s).

(iii) A alternative non-recursive construction of an OA(sk, (sk − 1)/(s− 1), s, 2) is as follows:

• Create an sk × k matrix E that contains the ej(k), j = 1, . . . , k as its columns.
• Create a coefficient matrix C by transposing the matrix from the previous bullet and removing

the all-zero column and all columns whose first non-zero element is different from 1.
• EC, with all operations in the matrix multiplication are done w.r.t. GF(s), yields the same

OA(sk, (sk − 1)/(s− 1), s, 2) as the recursive process of (ii).

In words, e1(k) to ek(k) of Lemma 1 (i) are the slowest changing to fastest changing arrangements of sk−1

replicates each of the numbers 0 to s− 1. Lemma 1 (ii) implies an ordering of the columns of the resulting
OA and makes the structure obvious, Lemma 1 (iii) is easier to implement. For some purposes, it is not
important whether the columns of the matrix E in part (iii) of the lemma are coded from slow-changing
to fast-changing or from fast-changing to slow-changing. For the power coding introduced in this paper,
however, this is important.

Example 1. For s = 3 and k = 2, an OA(32, (32 − 1)/(3 − 1), 3, 2) = OA(9, 4, 3, 2) is obtained
from the two basic vectors e1(2)=000111222 and e2(2)=012012012 and their two linear combinations
e1(2) + e2(2) = 012120201 and e1(2) +3 2 ·3 e2(2) = 012201120. This 9× 4 OA can be used as R(3, 2) in
part (ii) of the lemma and can be extended to the 27× 13 OA R(3, 3) as follows: The first four columns
consist of three stacked identical copies of R(3, 2). Column 5 is e3(3) = 012012012012012012012012012,
columns 6 to 9 are the first four columns plus e3(3) (modulo 3), and columns 10 to 13 are the first four
columns plus 2 ·3 e3(3) (modulo 3). The matrix C of part (iii) for the 27× 13 OA consists of the columns
100, 010, 110, 120, 001, 101, 011, 111, 121, 102, 012, 112, 122.

2.3 Projections, coarsening, and level expansion
Let D be an OA with n rows and m columns. Any n × d sub matrix of D is called a d-dimensional
projection of D. For brevity, dimensionality is denoted as 1D, 2D, . . ., or generally as dD.

Collapsing the levels 0, . . . , s`− 1 of a column in s` levels into only sk levels 0, . . . , sk − 1, k = 1, . . . , `− 1,
can be simply done by applying the formula xsk = bxs`/(s`−k)c, where xs` denotes the initial levels. Such
coarsening groups the initial s` levels into sk strata of adjacent levels.

Conversely, if n = λ · s`, λ ≥ 1, the columns of an OA(n,m, sk, 1) can be expanded from sk levels to
s` levels by replacing

• the λ · s`−k instances of the original level 0 with values 0, . . . , s`−k − 1 (each occurring λ times)
• the λ · s`−k instances of the original level 1 with values s`−k, . . . , 2s`−k − 1 (each occurring λ times)
• the λ · s`−k instances of the original level 2 with values 2s`−k, . . . , 3s`−k− 1 (each occurring λ times)
• . . .
• the λ · s`−k instances of the original level sk − 1 with values (sk − 1)s`−k, . . . , s` − 1 (each occurring
λ times)

Example 2. The two-column OA (full factorial) with columns 000111222 and 012012012 can, e.g., be
expanded to 012345678 and 036147258 or to 012345678 and 048156237. Coarsening the levels will return
the ingoing columns in either case.

The example illustrates that expanding levels can be done in different ways; these can lead to results of
diverse quality. On the contrary, the coarsening of levels is a simple and unique activity.
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3 Model matrices and related tools
As was mentioned before, GSOAs are typically used for experimentation with quantitative variables.
However, investigation of their stratification behavior relies on a coding for qualitative factors. This
section introduces useful terminology around qualitative coding and the related GWLP, as well as a
suitable real-valued coding that can be used for obtaining the stratification pattern by Tian and Xu
(2022), which can be seen as a close relative to the GWLP that is able to reflect the stratification behavior
of a GSOA.

3.1 Model matrices and effect column groups
For using a qualitative factor with s levels in a linear model, its s− 1 main effects degrees of freedom are
coded in separate model matrix columns, e.g. by dummy coding, polynomial coding or Helmert coding.
Xu and Wu (2001) used the afore-mentioned normalized orthogonal coding, which is now formally defined:

Definition 1 (Normalized orthogonal coding). An s× (s− 1) matrix is a normalized orthogonal contrast
matrix for a factor in s levels, if and only if all its columns have sum zero, are pairwise uncorrelated, and
have squared length s.
A model matrix for a factorial model for n runs in m factors is in normalized orthogonal coding, if and
only if its first column is 1n (for the intercept), the main effect for each factor is coded with a normalized
orthogonal contrast matrix, and the (s1 − 1) · · · · · (sd − 1) d-factor interaction columns for any d factor
projection are obtained as the element wise products of all combinations of main effect columns from
d distinct factors.

Let F denote a full factorial design in m columns at s1 × · · · × sm levels, which has N =
∏m
i=1 si rows.

For the N ×N full model matrix M(F) in normalized orthogonal coding, M(F)>M(F) = NIN . The
full model matrix in normalized orthogonal coding of an actual design D consists of a suitable selection
from the N rows of M(F); as it is instrumental in assessing the properties of D, some notation and
terminology for it is now defined.

Definition 2 (Full model matrix and effect column groups). Let D denote an OA with n runs and
m columns.

(i) The full model matrix for D can be written as

M = (1n,M1, . . . ,Mm), (1)

where M1 holds all columns for main effects and Md holds all columns for the
(
m
d

)
d-factor interaction

effects, d = 2, . . . ,m.
(ii) Within Md, the columns for a specific d-dimensional projection are called an effect column group.

Example 3. Tables 1 and 2 show matrices M1 in normalized orthogonal coding using normalized
orthogonal polynomial contrasts for saturated regular OA(4, 3, 2, 2), OA(8, 7, 2, 2), OA(9, 4, 3, 2), and
OA(16, 5, 4, 2). For the 2-level OAs, all effect column groups consist of a single column. The effect column
groups for the four columns of the 3-level OA consist of two columns each, and those for the five columns
of the 4-level OA consist of three columns each. Matrices M2 can be obtained by taking all pairwise
products between columns from different effect column groups, and so forth. The effect column groups of
matrix M2 have single columns for the 2-level OAs, four columns each for the 3-level OA and 9 columns
each for the 4-level OA. The extension to Md, d > 2 is obvious.

3.2 The GWLP and generalized minimum aberration
The GWLP is a tool for ranking factorial designs for qualitative factors via generalized minimum aberration
(GMA). It is included here for two reasons: Tian and Xu’s (2022) proposal for ranking (G)SOAs follows
the same spirit as GMA, and the stratification pattern and the GWLP are closely related and consist of
the same ingredients.

Once the model matrix M of Equation (1) is available for the OA, it is straightforward to obtain the
GWLP (A0, A1, . . . , Am). In the notation of this paper, Xu and Wu’s (2001) definition of Ad amounts to

Ad = 1>nMdM>
d 1n

/
n2 =

∑
{i1,...,id}⊆{1,...,m}

a{i1,...,id}, (2)
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Table 1: The matrices M1 for saturated regular OA(4, 3, 2, 2), OA(8, 7, 2, 2), and OA(9, 4, 3, 2). Columns
with the same column number in the topmost header row form an effect column group.

OA(4, 3, 2, 2) OA(8, 7, 2, 2) OA(9, 4, 3, 2)
1 2 3 1 2 3 4 5 6 7 1 2 3 4
1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −
√

3/2
√

1/2 −
√

3/2
√

1/2 −
√

3/2
√

1/2 −
√

3/2
√

1/2
−1 +1 +1 −1 −1 −1 +1 +1 +1 +1 −

√
3/2

√
1/2 0 −

√
2 0 −

√
2

√
3/2

√
1/2

+1 −1 +1 −1 +1 +1 −1 −1 +1 +1 −
√

3/2
√

1/2
√

3/2
√

1/2
√

3/2
√

1/2 0 −
√

2
+1 +1 −1 −1 +1 +1 +1 +1 −1 −1 0 −

√
2 −

√
3/2

√
1/2 0 −

√
2 0 −

√
2

+1 −1 +1 −1 +1 −1 +1 0 −
√

2 0 −
√

2
√

3/2
√

1/2 −
√

3/2
√

1/2
+1 −1 +1 +1 −1 +1 −1 0 −

√
2

√
3/2

√
1/2 −

√
3/2

√
1/2

√
3/2

√
1/2

+1 +1 −1 −1 +1 +1 −1
√

3/2
√

1/2 −
√

3/2
√

1/2
√

3/2
√

1/2
√

3/2
√

1/2
+1 +1 −1 +1 −1 −1 +1

√
3/2

√
1/2 0 −

√
2 −

√
3/2

√
1/2 0 −

√
2√

3/2
√

1/2
√

3/2
√

1/2 0 −
√

2 −
√

3/2
√

1/2

Table 2: Matrix M1 for the saturated regular OA(16, 5, 4, 2). Columns with the same column number in
the topmost header row form an effect column group.

1 2 3 4 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−
√

9/5 +1 −
√

1/5 −
√

9/5 +1 −
√

1/5 −
√

9/5 +1 −
√

1/5 −
√

9/5 +1 −
√

1/5 −
√

9/5 +1 −
√

1/5
−
√

9/5 +1 −
√

1/5 −
√

1/5 −1
√

9/5 −
√

1/5 −1
√

9/5
√

1/5 −1 −
√

9/5
√

9/5 +1
√

1/5
−
√

9/5 +1 −
√

1/5
√

1/5 −1 −
√

9/5
√

1/5 −1 −
√

9/5
√

9/5 +1
√

1/5 −
√

1/5 −1
√

9/5
−
√

9/5 +1 −
√

1/5
√

9/5 +1
√

1/5
√

9/5 +1
√

1/5 −
√

1/5 −1
√

9/5
√

1/5 −1 −
√

9/5
−
√

1/5 −1
√

9/5 −
√

9/5 +1 −
√

1/5 −
√

1/5 −1
√

9/5 −
√

1/5 −1
√

9/5 −
√

1/5 −1
√

9/5
−
√

1/5 −1
√

9/5 −
√

1/5 −1
√

9/5 −
√

9/5 +1 −
√

1/5
√

9/5 +1
√

1/5
√

1/5 −1 −
√

9/5
−
√

1/5 −1
√

9/5
√

1/5 −1 −
√

9/5
√

9/5 +1
√

1/5
√

1/5 −1 −
√

9/5 −
√

9/5 +1 −
√

1/5
−
√

1/5 −1
√

9/5
√

9/5 +1
√

1/5
√

1/5 −1 −
√

9/5 −
√

9/5 +1 −
√

1/5
√

9/5 +1
√

1/5√
1/5 −1 −

√
9/5 −

√
9/5 +1 −

√
1/5

√
1/5 −1 −

√
9/5

√
1/5 −1 −

√
9/5

√
1/5 −1 −

√
9/5√

1/5 −1 −
√

9/5 −
√

1/5 −1
√

9/5
√

9/5 +1
√

1/5 −
√

9/5 +1 −
√

1/5 −
√

1/5 −1
√

9/5√
1/5 −1 −

√
9/5

√
1/5 −1 −

√
9/5 −

√
9/5 +1 −

√
1/5 −

√
1/5 −1

√
9/5

√
9/5 +1

√
1/5√

1/5 −1 −
√

9/5
√

9/5 +1
√

1/5 −
√

1/5 −1
√

9/5
√

9/5 +1
√

1/5 −
√

9/5 +1 −
√

1/5√
9/5 +1

√
1/5 −

√
9/5 +1 −

√
1/5

√
9/5 +1

√
1/5

√
9/5 +1

√
1/5

√
9/5 +1

√
1/5√

9/5 +1
√

1/5 −
√

1/5 −1
√

9/5
√

1/5 −1 −
√

9/5 −
√

1/5 −1
√

9/5 −
√

9/5 +1 −
√

1/5√
9/5 +1

√
1/5

√
1/5 −1 −

√
9/5 −

√
1/5 −1

√
9/5 −

√
9/5 +1 −

√
1/5

√
1/5 −1 −

√
9/5√

9/5 +1
√

1/5
√

9/5 +1
√

1/5 −
√

9/5 +1 −
√

1/5
√

1/5 −1 −
√

9/5 −
√

1/5 −1
√

9/5
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i.e., n2Ad is the sum of squared column sums of matrix Md. Ad can also be broken down into projection
specific contributions a{i1,...,id}, where a{i1,...,id} consists of only the summands belonging to columns
from the effect column group for factors i1, . . . , id.

According to Xu and Wu (2001), the Ad (and by a simple argument also the a{i1,...,id}) are invariant to
the choice of normalized orthogonal coding for M. It is known that A0 = 1 (for the intercept column),
and that the sum of all Ad, d = 0, . . . ,m, is N/n for OAs with distinct rows. The GWLP is related to
the strength of an OA as follows: A1 = · · · = At = 0 and At+1 > 0 is equivalent to OA strength exactly t
(i.e., criteria for OA strength t + 1 are violated). Xu and Wu proposed to rank OAs by GMA, i.e. to
consider an OA D1 as better than an OA D2, if the leftmost element for which the GWLPs differ is
smaller for D1 than for D2.

3.3 Power contrasts and power coding
For the definition of power coding, the saturated regular OA(s`, (s` − 1)/(s− 1), s, 2) of Lemma 1 (ii) is
an important ingredient.

Definition 3 (Power contrasts, power coding, and effect column micro groups). Consider a column in s`
levels.

(i) The s` − 1 contrast columns that are obtained by

• first creating the regular saturated OA(s`, (s` − 1)/(s− 1), s, 2) of Lemma 1 (ii)
• and then replacing each of the OA columns with the s− 1 columns according to the normalized

orthogonal polynomial coding for s levels

are called power contrasts. They are arranged in an s` × (s` − 1) matrix.

(ii) The s` − 1 columns of the effect column group for a main effect coded with power contrasts can be
subdivided into (s` − 1)/(s− 1) effect column micro groups according to the effect column groups
for main effects of the underlying saturated OA in s-level factors.

(iii) For a d-factor interaction with all factors coded in power contrasts, an effect column micro group
consists of all columns that are obtained as product columns of from a single main effect column
micro group for each of the factors.

(iv) Coding main effects with power contrasts and interaction effects as products of main effects columns
in the usual way is called power coding in this paper.

The definition arbitrarily fixes the choice of normalized orthogonal contrasts to polynomial. Results of
this paper would not change by using a different normalized orthogonal coding. The 2m − 1 effect column
groups in the matrix M of Equation (1) (excluding the intercept) are subdivided into a total of 2m·` − 1
effect column micro groups.

Proposition 1. Power coding for arrays with all columns in s` levels is a normalized orthogonal coding
in the sense of Definition 1.

Proof. It suffices to show that power contrasts are normalized orthogonal contrasts. The s` × (s` − 1)
matrix P of main effect power contrasts for a single column is the full model matrix M(F) without the
intercept column for the full factorial in the s-level basic vectors e1, . . . , e` used in the Rao-Hamming
construction of Lemma 1 (ii). Thus, its column sums are zero, and P>P = s`Is`−1, as requested in
Definition 1. Hence, power coding uses normalized orthogonal contrasts and handles them in the way
prescribed in Definition 1 and is thus a normalized orthogonal coding.

Example 4. The model matrices of Tables 1 and 2 can also serve as power contrasts for factors in 4, 8,
9 or 16 levels. The effect column groups indicated in the tables are the effect column micro groups for
the s` level main effect columns. Note that power contrasts for 16-level columns can be based on 16 = 42,
like in the table, or on 16 = 24 in analogy to 4 and 8 levels; in the latter case, each single column would
consist of -1/+1 values and would be considered as an effect column micro group of its own.
An effect column group within the model matrix M2 consists of (s` − 1)2 columns (9, 49, 64, 225
respectively); there are

(
m
2
)
such effect column groups. An effect column micro group within M2 consists

of (s− 1)2 columns (1 for s = 2, 4 for s = 3, 9 for s = 4), and there are (s+ 1)2 such effect column micro
groups within each effect column group.
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Proposition 2. Consider the matrix of power contrasts for an s` level column, ` = 1, 2, . . ., and let u
denote the column number.

(i) u ∈ {1, . . . , s− 1}: Column u is a main effect column for e1(`) in the Rao-Hamming construction
(slowest changing). It has up to s1 distinct values, with the same value assigned within each of s
strata of adjacent levels.

(ii) For ` ≥ 2: si−1 ≤ u ≤ si − 1, i = 2, . . . , `: Column u is a main effect column for ei(`) or
an interaction column involving ei(`) and (slower-changing) basic columns eν(`), ν < i, of the
Rao-Hamming construction. It has up to si distinct values, with the same value assigned within
each of si strata of adjacent levels.

(iii) The exponent of s in the maximum number of distinct values according to (i) and (ii) can be
calculated as ρ(u) = dlogs(u+ 1)e.

The proof is omitted, because it is straightforward.

The ρ(u) of part (iii) of the proposition are the “weights” of Tian and Xu (2022); ρ(u) is also the minimum
number of digits that is needed for representing the column number u as an s-ary number.

Remember that the single weight ρ(u) from Proposition 2 indicates constancy of the main effect model
matrix column within sρ(u) strata of adjacent levels. If a model matrix column in Md is a product of d
such columns, it relates to crossed strata obtained from the d contributing columns, and the number of
crossed strata is, of course,

∏
i=1,...,d s

ρ(ui) = s

∑
i=1,...,d

ρ(ui). This makes it natural to define the weight
of a vector of column numbers as the sum of individual weights:

Definition 4 (Weight for a model matrix column (restated from Tian and Xu 2022)). Let m denote a
column in the model matrix portion Md from Equation (1) from power coding for an OA with n runs
and m columns in s` levels each.
Let u = (u1, . . . , ud)> denote the vector of column positions within their respective main effect column
group for the columns that were multiplied to obtain m.
The weight assigned to the column m is ρ(u) =

∑d
i=1 ρ(ui), with ρ(ui) according to Proposition 2 (iii).

Example 5. The weights for the contrasts of Tables 1 and 2 are 122 (4 levels), 1223333 (8 levels), 11222222
(9 levels), and 111222222222222 (16 levels). Would one consider the 16 runs using power contrasts based
on 16 = 24, the resulting (different) 16-level power contrasts would have weights 122333344444444.
These apply to main effect column groups, i.e., the n × (m · (s` − 1)) matrix M1 for an array with m
columns in s` levels each consists of m effect column groups with s` − 1 columns each, and the weights
within each such group are as stated above. As was mentioned before, these weights are constant within
effect column micro groups of s− 1 columns each.
Columns of M2 have at least weight 2 (two main effect columns with weight 1 each) and at most weight
2` (two main effect columns with weight ` each). Considering the two variants of power contrasts for
16 levels, the maximum weight for the columns of M2 is thus 4 for the tabulated coding and 8 for the
alternative 16-level power contrasts based on 16 = 24. Of course, the meaning of the weight changes with
s, because weights were derived as exponents to s.

Proposition 3. Let M be a full model matrix according to Equation (1) based on power coding, with
column weights according to Definition 4. All columns in the same effect column micro group have the
same weight.

Proof. Proposition 2 implies that all columns within the same effect column micro group for M1 have the
same weights. An effect column micro group for Md combines one effect column micro group from M1
for each of the d variables from the dD projection, which implies that exactly one combination weight is
obtained.

The proposition is important, because it implies that column groups defined by weights comprise entire
effect column micro groups only, which will make it possible to prove that power coding can be used in
place of Tian and Xu’s complex coding.

4 GSOAs and the stratification pattern
As was mentioned before, in an OA of OA strength at least two with columns in s` levels, each 2D
projection would consist of equireplicated copies of all conceivable s2` distinct level combinations. (G)SOAs
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typically have OA strength 1 only (and need not even have that strength). For evaluating their behavior
in d dimensions, one considers coarsened columns, as was explained in the introduction for classical SOAs.
As was mentioned before, Tian and Xu (2022) proposed GSOAs that consider s` levels in combination
with strength t, where ` and t need not coincide. These are now defined.

Definition 5 (SOA and GSOA). An array in n = λs` runs with m columns at s` levels each is a
GSOA(n,m, s`, t), t ≤ m, if and only if all possible stratifications into st = su1 · . . . · sut strata, ui integers
with 0 ≤ ui ≤ ` and u1 + . . .+ ut = t, are equireplicated.
If t = `, the GSOA is an SOA.

Note that the definition of GSOAs does not guarantee the existence of st strata in lower dimensions: for
` < t, 1D (and perhaps even 2D) stratification is equireplicated (implied by balance in equireplication in
higher dimensions), but may yield fewer than st strata (see also Example 10). For ` > t, a GSOA with s`
levels of strength t can, e.g., be obtained by expanding the levels of an SOA(n,m, st, t), assuming that s`
divides n.

Example 6. A GSOA(81, 4, 81, 3) has been created from an SOA(81, 4, 27, 3) by expanding the levels of
each column to 81 (assigning the three possible choices for each original level in random order). (The
ingoing SOA was obtained by the Li et al. (2021) construction from the OA(27, 4, 3, 3) that is available in
R package DoE.base (Grömping 2018) as L27.3.4.) This GSOA will be revisited in Examples 7 and 8
for illustrating the stratification pattern and its interpretation.

Tian and Xu (2022) introduced the stratification pattern (the space-filling pattern of their article) as a
tool to assess a (G)SOAs strength and stratification behavior, in the same spirit as the GWLP assesses
an OAs strength and balance properties. The ingredients for obtaining the stratification pattern are
normalized squared column sums of the model matrix of Equation (1). For the GWLP of Xu and Wu
(2001), these were summed separately for each dimension of the projection, i.e., there is a sum for each
d, d = 0, 1, . . . ,m. For the stratification pattern, they are summed separately by the column weights
instead.

Definition 6 (Stratification pattern). Let M denote the model matrix in power contrast coding for an
OA with n runs and m columns at s` levels each. Let m denote a column in Md, d = 1, . . . ,m, and let
u(m) = (u1, . . . , ud)> denote the vector of column positions within their main effect column group for
the columns that were multiplied to obtain m.

The elements of the stratification pattern (S1, . . . , Sm·`) are

Sj =
min(m,j)∑

d=max(1,dj/`e)

∑
m a column of Md

and ρ(u(m)) = j

(1>nm)2/n2. (3)

Example 7. Table 3 shows the stratification pattern for up to weight 12 (bottom row), split up by
contributions from different dimensions, for the GSOA(81, 4, 81, 3) of Example 6. There are four rows
for 1D to 4D (m = 4), and there are 16 columns (only 12 shown) for weights j = 1, . . . ,m · `. The right
margin shows the GWLP - which also includes the hidden columns (easy to verify with function GWLP of
R package DoE.base). The boundaries for d in Definition 6 start at 1 for j = 1, . . . , 4, at 2 for j = 5, . . . , 8,

Table 3: Dimension by weight table of contributions to GWLP and stratification pattern from the
GSOA(81, 4, 81, 3). Row label: dimension. Column label: weight. Bottom margin: stratification pattern
(first 12 elements).

1 2 3 4 5 6 7 8 9 10 11 12 GWLP
1 0 0 0 0 . . . . . . . . last 0
2 . 0 0 20 32 80 96 252 . . . . four 480
3 . . 0 0 8 112 368 1248 2808 5184 7776 7776 columns 25280
4 . . . 0 8 20 104 504 1872 6372 17280 40176 not 505680
Sum 0 0 0 20 48 212 568 2004 4680 11556 25056 47952 shown 531440
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and so forth, and go up to j for j = 1, 2, 3 and up to 4 for all larger j. The “.” in the table indicate
impossible combinations of d and j.

Tian and Xu (2022) used a definition comparable to Definition 6, but with a normalized orthogonal
coding based on the sth roots of the unity instead of the power coding. It is now shown that use of power
coding is equivalent to Tian and Xu’s coding as far as obtaining stratification patterns is concerned.

Proposition 4. The stratification pattern of Definition 6 is equivalent to Tian and Xu’s space-filling
pattern.

Proof. Tian and Xu (2022) coded the model matrix columns according to normalized orthogonal coding
using a contrast matrix constructed from powers of the complex number ξ = exp2πi/s. The contrast
matrix has rows for the levels x = 0, . . . , s` − 1 and columns for the index value u = 1, . . . , s` − 1, and the
entry for the combination of row x with column u is obtained as χu(x) = ξ〈u,x〉, with 〈•, •〉 denoting a
reversed scalar product based on s-ary representations of x and u. Careful study shows that the columns
of Tian and Xu’s contrasts also fulfill the properties of Proposition 2. Define s-level contrasts χ1(x)
(s = 2) or χ1(x), χ1(x)2, . . . , χ1(x)s−1 (s > 2), arranged in a row each for x = 0 to x = s− 1. This is a
normalized orthogonal contrast matrix for s-level columns and can be used instead of the normalized
orthogonal polynomial coding in the power contrasts of Definition 3. Because of well-known invariance
results for sums of squared column sums for entire effect column micro groups, the modified power coding
with the above contrasts yields the same stratification pattern as the original power coding of Definition 3.
Furthermore, it can be verified that the above construction yields Tian and Xu’s contrast matrix for s`
levels, but with different column order within columns of the same weight ρ(u). As changing the column
order within columns of the same weight does not impact the stratification pattern, the stratification
pattern obtained in this paper coincides with the space-filling pattern introduced by Tian and Xu.

The proposition implies that Tian and Xu’s theoretical results apply to the stratification pattern obtained
from power coding.

Lemma 2 (Tian and Xu). Consider a GSOA with n runs and m columns in s` levels each, and let
(S1, . . . , Sm·`) denote its stratification pattern.

(i) The GSOA has stratification strength t, if and only if S1 = · · · = St = 0.
(ii) If the GSOA has distinct rows,

∑m·`
j=1 Sj = N/n− 1.

The sum of the elements is (of course) the same as for the GWLP elements, except for omitting the 0th
element that is normally included in the GWLP but not in the stratification pattern.

Example 8. We see from Table 3 that the GSOA has strength 3, and that strength 4 is violated because
there are two-dimensional projections for which 34 equireplicated strata are not achieved; S4 is inherited
from the SOA(81, 4, 27, 3) from which the GSOA was created (2D stratification with weight 4 can of
course not involve any single column with 81 levels).
The sum of all pattern entries (including those from hidden columns 13 to 16) is 814/81− 1, i.e., one
less than the sum of all GWLP elements (for the GWLP, including A0 = 1 increases that sum by 1).
The stratification pattern for the underlying SOA(81, 4, 27, 3) is (0, 0, 0, 20, 32, 140, 232, 616, 1056,
1440, 1728, 1296) and has sum 274/81− 1 = 6560; additional contributions from level expansion start for
weight 5 and increase with increasing weight.

Tian and Xu (2022) proposed the use of a GMA like criterion for stratification patterns; this is now
defined as “minimum stratification aberration”:

Definition 7 (Stratification aberration and MSA). Let an array D with n runs and m columns in s`
levels each have the stratification pattern S(D) = (S1, S2, . . . , Sm·`).

(i) Let D1 and D2 be two arrays with n runs and m columns in s` levels each. D1 has better
stratification aberration than D2, if and only if the leftmost element for which S(D1) and S(D2)
differ is smaller for D1 than for D2.

(ii) D has minimum stratification aberration (MSA) among all arrays with the same n,m, s`, if there is
no array that has better stratification aberration.

The definition (of course) implies that arrays with larger strength are always better than arrays with
smaller strength. Note that the definition restricts comparison to arrays with comparable properties
(n,m,s`). In particular, naïve comparisons between arrays with different numbers of levels may be
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misleading. Furthermore, where s and ` can not be uniquely derived from context, one has to state them
with the reported stratification pattern; for example, s = 9 with ` = 2 instead of s = 3 with ` = 4 would
have been possible in Example 7, and would have yielded a very different stratification pattern with
S2 > 0. Section 6 provides an explicit example (Example 12).

5 Implementation of the stratification pattern
In the R package SOAs (Grömping 2022b), the power contrasts are implemented in function contr.Power,
function Spattern calculates the stratification pattern, and function dim_wt_tab allows to extract and
display a dimension by weight table, like in Table 3, from a pattern created by function Spattern.

This section presents the algorithm used for implementing the stratification pattern and gives an impression
of its run times. As calculations can be resource intensive for moderate or large arrays, and one is often
only interested in

• low-dimensional projections (i.e., small d),
• weights j that are not much larger than t or `,

the algorithm permits the use of user-specified upper limits for the dimension (dmax ≤ m) and the weight
(jmax ≤ m`). Per default, jmax = 4, and dmax = jmax; both can of course be modified. The algorithm
then proceeds as follows:

1. Create the main effects model matrix M1 with m · (s` − 1) columns using power contrasts for s`
levels.

2. Obtain the list of all 1D to dmaxD projections (list of dmax matrices, the columns of which hold the
factor IDs of factors in the projection).

3. Loop over dimensions d = 1, . . . , dmax:
i. If jmax − d+ 1 < `, restrict the columns to be considered from M1 to those with weights up

to jmax − d+ 1 (because columns with larger weights cannot contribute to a dD interaction
column with weight at most jmax).

ii. Obtain the vector of weights for the columns of a single d-factor interaction matrix (invariant
to the specific dD projection, using the reduced columns of M1 in the construction); create a
second vector that only holds weights up to jmax.

iii. Initialize the vector of dD contributions to the stratification pattern with missing values.
iv. Select the dth element of the list obtained in Step 2.
v. Loop over the

(
m
d

)
dD projections (columns of the matrix selected in iv.):

a. determine the d-tuples of column numbers for M1 columns to be multiplied for obtaining
the effect column group (neglecting columns excluded in i.),

b. remove tuples corresponding to weights larger than jmax, using the weights vector from ii.,
c. loop over the remaining tuples:

register the weight j (using the reduced weights vector from ii.), calculate the product
column and add the square of its column sum to the jth element of the vector of dD
contributions (initializing it with this value, if it is still missing).

4. Sum the vectors of dD contributions, d = 1, . . . , dmax, into the stratification pattern; keep the table
of separate dD contributions as an attribute of the returned object.

If a stratification pattern has been calculated with an upper limit dmax < m on dimension, it must be
interpreted w.r.t. that restriction for weights j = dmax + 1, . . . ,m`, whereas an upper limit on the weight
has no impact on pattern entries for weights up to jmax.

Run time has not been extensively studied. For an SOA(125, 6, 25, 2), run times with unlimited weights
were dominated by the number of contributions from dmax-factor interactions that contribute to the
stratification pattern for the highest-dimensional projection, which can be calculated as

(
m
dmax

)
· 24dmax

(considering dmax = 2, . . . , 5, with run times of 2, 49, 1078, 10888 seconds). For a GSOA(125, 6, 125, 2), the(
m
d

)
portion of the number of contributions remains unchanged, but the number of columns increases by the

factor (124/24)d, i.e., one would expect run times (with unlimited weights) to increase to approximately
41, 6772, 768290, 40085929 seconds=0, 1.9, 213.4, 11135 hours=0, 0.1, 8.9, 464 days, possibly with some
additional increase for overhead. Actual durations were about 45 and 7748 seconds for dmax = 2 and 3.
Though low dimensional projections are the most important ones, it is clearly desirable to substantially
reduce the maximum weight jmax in order to make calculations feasible. According to Proposition 2, for a
matrix of power contrasts for s` levels, the number of columns with small weight is relatively low, so that
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limiting the weight has a very beneficial effect on run times, and a much stronger effect than limiting the
dimension. For the 125 run with 25 levels example, there are only a total of 63 interaction effects of all
dimensions to be considered, so that the potential from reducing dmax is limited. If jmax = 4 (implying
dmax = 4, because weights for larger dimensions are larger than 4), calculation of the stratification pattern
was completed in about 6 seconds. Run times for jmax = 5 (implying dmax = 5) and jmax = 6 (and
dmax = m = 6) were about 38 seconds or 228 seconds, respectively, which was much faster than when
restricting dimension only. For the 125-level case, times were slower, but not dramatically so, because
most of the additional interaction columns have relatively large weights: restriction to maximum weights
4, 5 or 6 ran in approximately 8, 73 or 846 seconds, respectively. Besides the larger effect on run time,
limiting the weight and thereby only implicitly limiting dimension has the benefit that S1, . . . , Sjmax are
not reduced by omitting relevant projections. Note, however, that limiting dimension will have a larger
effect for arrays with a large number of columns.

6 Examples
All calculations have been done with R, and the code is available online. Besides the stratification pattern,
the φp criterion (Morris and Mitchell 1995) is used for the assessment of space-filling:

φp(X) =

 ∑
{i,j}⊂{1,...,n},i6=j

d(x(i),x(j))−p
1/p

. (4)

For large p, the φp criterion can mimic the maximin distance criterion well, and the R package SOAs uses
the criterion with p = 50 for optimization of space filling within constructions, via level permutations in
construction matrices. Small values of φp imply better space-filling. The φp value is a good supplement to
the stratification pattern, because it captures a different aspect of space-filling: comparing stratification
patterns between arrays with different numbers of levels for each column, e.g., the GSOA(81, 4, 81, 3) of
Example 7 and the SOA(81, 4, 27, 3) from which it was created, is of limited use, because the different
numbers of levels per column between the arrays are not directly reflected in the pattern as an advantage
for the array with more levels, but rather as a disadvantage because the sum of pattern entries is larger
for the array with more levels ((S1, . . . , S6) = (0, 0, 0, 20, 32, 140) for the SOA, as compared to the pattern
of Table 3). The φp values do capture the fineness / coarseness of columns: φp = 0.175 for the SOA and
φp = 0.06 for the GSOA, i.e. expanding the levels substantially reduces (=improves) the φp value.

Example 9. Sun, Wang and Xu (2019) provided four different arrays with three 25-level columns in
25 runs. Their stratification patterns have m` = 3 · 2 elements and are given in Table 4. The sum of
pattern elements is 253/25− 1 = 624. The fourth array is the only one that achieves SOA strength 2.
This example demonstrates that the power contrast based calculation of the stratification pattern does
indeed yield the same results as the construction in Tian and Xu (2022) (their Example 4 provides S1 to
S4 for each of these arrays).

Example 10. This example treats the extreme case ` = 1: The stratification pattern for the OA(81, 8, 3, 4),
available in R package DoE.base as L81.3.8, is (0, 0, 0, 22.42, 23.51, 18.96, 9.88, 5.23). As ` = 1,
the stratification pattern has exactly m = 8 elements, and its elements for j = 1, . . . ,m coincide with
the corresponding GWLP elements, as was already noted by Tian and Xu 2022 for OAs with ` = 1.
S1 = S2 = S3 = 0 means that the stratification strength is 3, which implies up to s3 = 27 strata for 1D,
2D and 3D. Of course, there are only three strata in 1D and only nine strata in 2D, because more is
simply not possible. This is an extreme example that underlines what a zero in the stratification pattern

Table 4: Stratification patterns of the four 25-level arrays of Sun et al. (2019)

S1 S2 S3 S4 S5 S6

D1 0 0.64 26.08 85.92 191.36 320
D2 0 1.84 22.48 89.52 190.16 320
D3 0 0.96 25.12 86.88 191.04 320
D4 0 0.00 28.00 84.00 192.00 320
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means: Sj = 0 if and only if all existing stratifications with up to sj strata are equireplicated, and Sj = 0
does not imply that sj strata exist in all dimensions up to j.

Example 11. Tian and Xu (2022) conducted an exhaustive search of subsets of columns from Shi and
Tang’s (2020) construction for up to 9 8-level columns in 32 runs. Among other things, they found
4-column subsets that have stratification strength 4. One of these and several expansions to GSOAs are
now inspected. The expansions were obtained by expanding the four observations with the same level
(each of 0 to 7) into either

• balanced 16-level: two copies each of corresponding adjacent levels from 0 to 15,
• unbalanced 16-level: one and three copies of adjacent levels from 0 to 15 (deciding at random, which

of the levels occurs more frequently; of course, one would avoid using an intentionally unbalanced
expansion for an actual experiment),

• balanced 32-level: corresponding adjacent levels from 0 to 31.

Table 5 provides a breakdown into dimensions for the elements of the stratification pattern for the SOA
and the three GSOAs. Expanding the levels ensures that stratification into 24 = 16 strata is possible in
all dimensions up to 4. The balanced allocations provide strength 4 GSOAs. The unbalanced allocation,
on the other hand, yields strength 3 only, because there is a 1D violation of equireplication for 16 strata
(and also a 1 in the GWLP for 1D, i.e., the unbalanced GSOA does not have OA strength 1). Note that
level expansion substantially reduces φp from 0.343 for the SOA over 0.143 for the balanced 16-level
GSOA to 0.073 for the 32-level GSOA, whereas the stratification patterns do not reflect the improvement.
The unbalanced GSOA, even though of stratification strength 3 only, also has a better φp than the SOA
(0.2), but a worse one than the balanced 16-level GSOA. If feasible, the 32-level GSOA should presumably
be preferred to the 16-level one, even though this cannot be inferred from the stratification pattern.

Example 12. An SOA with 5 16 level columns in 64 runs has been obtained using the construction by
Zhou and Tang (2019). This example is interesting for two reasons: Level permutations for optimizing
φp (conducted per default by R package SOAs) modify the stratification pattern, and the contrasts for
the 16 levels can be taken as power contrasts from 24 levels or from 42 levels. φp optimization by level
permutations brought an initial unoptimized φp;unoptimized = 0.256 down to φp;optimized = 0.105 (like in
Example 11, it can be expected that level expansion to 32 or 64 levels, i.e., obtaining a GSOA, would
further improve (=decrease) φp; this has not been done here). The stratification pattern has 20 elements
for the 24 perspective or 10 elements for the 42 perspective, respectively. Table 6 shows the first six
elements for both: In the 42 perspective, the SOA has SOA strength 2 (i.e., 42 = 16 strata are guaranteed
for all 1D and 2D projections); the construction yields strength 2+, which is in line with the entry for
dimension 2 and weight 3 being zero. In the 24 perspective, the array has strength 3, as S4 = 1.75 is the
first non-zero element (all dimensions considered); this was achieved by searching for a level permutation
that preserves this strength, most level permutations would reduce the strength to 2, by causing a small
non-zero S3. Strength 4 is not attained, because not all 2× 2× 4 or 2× 4× 2 or 4× 2× 2 stratifications
yield 16 strata. In 2D, the array even attains 64 equireplicated strata of the form 16× 4 or 4× 16 (as the
entry for 2D and weight 3 is zero in the 42 perspective, the 2+ by Zhou and Tang). In the 24 perspective,
64 strata are not guaranteed, because 8× 8 stratifications are not all equireplicated; at least, there are
32 equireplicated strata (i.e. 16× 2, 8× 4, 4× 8, 2× 16).

Example 12 illustrates that the stratification pattern

• depends on the choice of s and `, implying that also the strength depends on this choice,
• can depend on level permutations for improving φp at least for some constructions,
• yields a somewhat crude story, when considered without dimensionality breakdown,
• allows refined understanding by looking at the underlying dimension by weight table.

7 Discussion
The GSOAs by Tian and Xu (2022) are a natural extension of SOAs. They resolve the unfortunate
forced link between stratification strength and number of levels that existed in SOAs and was previously
overcome by defining exceptions via qualifiers such as +, − or ∗. Their use for computer experimentation
benefits from favorable space-filling properties, and the stratification pattern (called space-filling pattern
by Tian and Xu 2022) captures the stratification aspect of space-filling. The stratification pattern is a
relative of the long-standing GWLP (Xu and Wu 2001): both sum the same squared sums of model matrix
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Table 5: Dimension by weight tables of contributions to GWLP and stratification pattern for an
SOA(32, 4, 8, 4−) (top), two GSOAs with 16 level columns derived thereof (second: strength 4, third:
strength 3), and a strength 4 GSOA with 32 level columns (bottom). Column headers: weights. Row
labels: dimensions. Bottom margin: stratification pattern (first three zero elements omitted for 32 run
GSOA).

1 2 3 4 5 6 7 8 9 10 11 12 GWLP
1 0 0 0 . . . . . . . . . 0
2 . 0 0 0 2 6 . . . . . . 8
3 . . 0 0 7 10 11 8 8 . . . 44
4 . . . 0 0 3 0 8 20 20 16 8 75
Sum 0 0 0 0 9 19 11 16 28 20 16 8 127

1 2 3 4 5 6 7 8 9 10 11 12 GWLP
1 0 0 0 0 . . . . . . . . last 0
2 . 0 0 0 4 14 10 14 . . . . four 42
3 . . 0 0 7 15 21 45 84 92 96 64 columns 424
4 . . . 0 0 3 1 14 45 82 164 248 not shown 1581
Sum 0 0 0 0 11 32 32 73 129 174 260 312 2047

1 2 3 4 5 6 7 8 9 10 11 12 GWLP
1 0 0 0 1 . . . . . . . . last 1
2 . 0 0 0 5 12 12 12.5 . . . . four 41.5
3 . . 0 0 7 13 23 44 80 95 96 64 columns 422
4 . . . 0 0 3 1 14 44 87.5 161 248 not shown 1582.5
Sum 0 0 0 1 12 28 36 70.5 124 182.5 257 312 2047

4 5 6 7 8 9 10 11 12 GWLP
1 0 0 . . . . . . . last 0
2 0 5.75 21.5 25.75 35.5 49 48.5 . . eight 186
3 0 7 12.75 28.25 63.25 154.75 289 478 639 columns 3720
4 0 0 3 1.5 15.25 59 133.75 318 681.5 not shown 28861
Sum 0 12.75 37.25 55.5 114 262.75 471.25 796 1320.5 32767

Table 6: Dimension by weight tables (weights up to 6) for stratification patterns of an SOA(64, 5, 16, 2)
(left), which is also a GSOA(64, 5, 16, 3) (right). Row labels: dimensions. Column labels: weights. Bottom
margins: stratification patterns.

s=4, `=2 s=2, `=4
1 2 3 4 5 6 1 2 3 4 5 6

1 0 0 . . . . 0 0 0 0 . .
2 . 0 0 30 . . . 0 0 0 0 5
3 . . 6.5 70.5 199.5 263.5 . . 0 1.75 6.25 17.25
4 . . . 3.5 93 600 . . . 0 0.5 2.5
5 . . . . 5 76.5 . . . . 0 0.25
Sum 0 0 6.5 104 297.5 940 0 0 0 1.75 6.75 25
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columns, but group the sums by different criteria (dimension for the GWLP, weight for the stratification
pattern).

The stratification pattern has been implemented in the R package SOAs, using the newly-introduced
power coding of Definition 3. Dimension by weight tabulation of the summands of the stratification
pattern is a by-product of the implementation and contributes to an improved understanding of an array’s
stratification behavior. Due to being based on coding for qualitative factors, obtaining stratification
patterns is very resource intensive for arrays with large numbers of levels; an upper limit for the weights
(and thus implicitly for the projection dimensions considered) per default keeps computing resources
in check. There may be the potential that future implementations by the group of Honguan Xu are
faster for situations that are particularly difficult for the model-matrix based approach taken in this
paper; this hope is based on the relation between function GWLP on the one hand and function length2 to
length5 on the other hand for obtaining GWLP elements in R package DoE.base. GWLP follows Hongquan
Xu’s approach using Krawtchouk polynomials, whereas the length* functions follow the model matrix
approach of this paper; these functions complement each other: GWLP is faster for arrays that have many
columns, the length* functions are faster for arrays that have many rows.

Space-filling behavior is a multifaceted phenomenon, and there are further aspects to consider in addition
to stratification behavior. For example, using the discrepancy metric φp (smaller=better, see Equation (4))
in conjunction with the stratification pattern might be a good idea. For computer experiments with
quantitative variables, it can be sensible to expand the levels of an SOA to obtain a GSOA with more
levels, ideally an LHD. For assessing the properties of such an expanded array, it is proposed to obtain
the stratification pattern for the underlying SOA, and to assess improved space-filling of the GSOA via
other criteria, e.g., the φp criterion (see Example 11). In this way, run time for obtaining the space-filling
pattern can be kept as low as possible, without loosing relevant information.

So far, the constructions implemented in the R package SOAs permit improvements by level permutation
w.r.t. the φp criterion, using an algorithm proposed by Weng (2014). The φp criterion can be cheaply
calculated, and Weng’s algorithm keeps searches over level permutations manageable. Improvements
w.r.t. the stratification pattern would also be desirable, and level permutations have been observed to
have an impact on the stratification pattern for some constructions (e.g., Example 12), but not for many
others. For achieving favorable stratification patterns, improved incorporation of stratification aspects
into the development of construction algorithms may be a more promising way than resource-intensive
optimization via level permutation. The stratification pattern may help to instigate research in that
direction.
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