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An algorithm for blocking regular fractional factorial
2-level designs with clear two-factor interactions

Ulrike Grömping
Beuth University of Applied Sciences, Berlin

Abstract
Regular fractional factorial designs with 2-level factors are among the most frequently used

experimental plans. In many cases, designs should be blocked for dealing with inhomogeneity of
experimental units. At the same time, the research question at hand may imply a focus on specified
sets of two-factor interactions, while it is not justified to assume negligibility of other low order
effects. This paper provides an algorithm for blocking a regular fraction into – possibly small – blocks
while keeping specified two-factor interactions clear from confounding with main effects or other
two-factor interactions. The proposed algorithm combines the algorithm of Grömping (2012) with an
implementation of a recent proposal by Godolphin (2019) for the blocking. It is implemented in the
R package FrF2.

1 Introduction

Regular fractional factorial designs with 2-level factors are frequently used. If inhomogeneity of exper-
imental units has to be accounted for, they are typically conducted in blocks. At the same time, the
research question at hand may imply a focus on specified sets of two-factor interactions, while it is not
justified to assume negligibility of other low order effects. For example, in experiments with control
factors and noise factors, particular emphasis may be on the estimation of interactions between control
factors and noise factors, while not assuming that interactions within each group of factors are negligible.
Two-factor interactions (2fis) that are not confounded with main effects or other 2fis are called “clear”.

Blocking fractional factorial 2-level designs can be a challenging task, if the blocked design must keep
a user-specified set of 2fis clear. A recent article by Janet Godolphin (2019) has opened an interesting
approach for this problem. Godolphin described her approach as “practitioner led” and provided catalogues
of blocking templates for blocks of size 4 that practitioners can use for creating a tailor-made design.
This paper provides an algorithm for the automation of the procedure, so that a design can be obtained
from specifying estimability requirements, the number of experimental runs and the number of blocks.
The algorithm is implemented in the R package FrF2 (see Grömping 2014a for an earlier version of
that package). It incorporates the estimability algorithm that was described in Grömping (2012), which
makes use of the R package igraph (Csardi and Nepusz 2006) for subgraph isomorphism checking. The
justification of Godolphin’s blocking method is closely related to graph-colouring and multipartite graphs;
its algorithmic implementation does not make use of graph methods related to graph colouring, but does
make use of subgraph isomorphism checking in case specific 2fis are requested to be clear.

Section 2 of this paper provides basic facts about regular fractional factorial designs, clear 2fis, blocking,
graph theory and basic features of the R package FrF2. Section 3 deep-dives the approach by Godolphin
for blocking full factorial designs, without or with requesting specific 2fis to be clear, and Section 4
presents the extension to blocking fractional factorial designs of resolution at least IV. Section 5 describes
the algorithm and its implementation in package FrF2. The final discussion points out limitations and
opportunities for future extensions. An appendix provides details on the fractions used in this paper, an
overview of relevant R functions in package FrF2, R code for the examples from Sections 3 and 4 and an
additional worked example that accommodates user-specified custom generators.

2 Notation and basic facts

Regular capital letters (excluding the letter “I”) denote experimental factors. Matrices are denoted by
boldface capital letters, the superscript > denotes a transpose. All matrices in this paper have elements
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from the Galois field for the prime 2 (GF(2)={0,1}), and matrix multiplication uses modular arithmetic
with modulus 2.

2.1 Regular fractions for 2-level factors

n treatment factors, each with levels 0 and 1 from GF(2), are to be investigated. A full factorial would
consist of 2n level combinations. A regular fraction in N = 2k = 2n−p level combinations can be obtained
by specifying p > 0 defining contrasts, which declare how p factors can be added to a full factorial in
k = n−p factors. For example, E=ABC and F=ABD can be used as defining contrasts for accommodating
p = 2 additional factors in a full factorial of k = 4 factors A to D; this means that the levels of factors
E and F are determined as the sums (modulo 2) of the levels of factors A, B and C or A, B and D,
respectively.

In line with Godolphin (2019), the p defining contrasts will also be denoted via a p× (n− p) confounding
matrix Z, with ones for the base factors involved in the defining contrast and zeroes for the others. Thus,
for the design of Table 1 we have

Z =
(

1 1 1 0
1 1 0 1

)

(columns labelled with letters A to D, rows with letters E and F).

Defining contrasts imply defining words (here: ABCE, ABDF), which are factor combinations whose
sum is a constant N × 1 vector with the neutral element 0, denoted as I; the p defining words span a
word group of size 2p (including I) which can be used to work out the entire confounding structure of
the fraction. See for example Table 1 for the confounding structure created from the defining contrasts
E=ABC, F=ABD: for each effect in the header, the table shows the confounded effects that can be
deduced from the two defining words ABCE and ABDF and from the resulting word group element
CDEF.

An important quality criterion for a fraction is the word length pattern (WLP), which is the frequency
table of word lengths that occur in the word group (three words of length 4 in Table 1). The length of
the shortest word is called the resolution of the fraction and denoted as a Roman numeral (resolution IV
in Table 1). The “minimum aberration” (MA) criterion ranks fractions by their WLPs: the fewer short
words, the better; the fraction of Table 1 is optimal according to the MA criterion.

Each fraction has a confounding structure; isomorphic fractions have confounding structures that are
equivalent up to factor labelling. Catalogues of nonisomorphic fractions are available, see e.g. Chen, Sun
and Wu (1993), Xu (2009), Block and Mee (2005, 2006) and Ryan and Bulutoglu (2010). These have been
implemented in R packages FrF2 and FrF2.catlg128. Catalogued fractions are denoted as n-p.rank,
where rank is the rank number in terms of the MA criterion (arbitrary in case of ties), i.e. rank 1 denotes
the best fraction in terms of the MA criterion. Thus, the fraction of Table 1 is catalogued as 6–2.1.

This section has given a concise account on regular fractions for 2-level factors. For a more detailed
exposition, readers are referred to the comprehensive book by Mee (2009) or to Grömping (2014a; uses m
instead of n for the number of factors, g instead of p for the number of generators, and the multiplicative
group {-1, +1} instead of the additive group {0, 1} modulo 2).

2.2 Clear two-factor interactions and clear interactions graphs

The concept of clear 2fis relies on the assumption that interactions of more than two factors are assumed
to be negligible. At the same time, there is a particular interest in certain 2fis, without the willingness to
assume negligibility of any other 2fis. It then makes sense to call a 2fi “clear”, if it is not confounded
with a main effect or another 2fi. If the resolution of a fraction is at least V, all 2fis are clear. Obviously,
if there is a defining word ABCD, the 2fis AB, AC, AD, BC, BD, CD cannot be clear. In Table 1, we can
inspect the fraction for clear 2fis by removing all entries of lengths larger than two, i.e. keeping only the
bold face entries: there are no clear 2fis (as these would be alone in a column); all main effects are clear,
however.
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Table 1: The confounding pattern from defining contrasts E=ABC and F=ABD. Headers give base factor
contrasts in Yates order, and the corresponding Yates column numbers. Bold face: main effects and 2fis
(in breach of this paper’s notational convention, bold face capitals in this table do not denote matrices).

Column 1 2 3 4 5 6 7 8
I A B AB C AC BC ABC D
ABCE BCE ACE CE ABE BE AE E ABCDE
ABDF BDF ADF DF ABCDF BCDF ACDF CDF ABF
CDEF ACDEF BCDEF ABCDEF DEF ADEF BDEF ABDEF CEF

Column 9 10 11 12 13 14 15
I AD BD ABD CD ACD BCD ABCD
ABCE BCDE ACDE CDE ABDE BDE ADE DE
ABDF BF AF F ABCF BCF ACF CF
CDEF ACEF BCEF ABCEF EF AEF BEF ABEF

A B

C

D

E

F G A B

C

D

E

F G

Figure 1: A requirement CIG with two different colourings.

In the following, the term clear interactions graph (CIG) will be used for any graph that depicts factors as
vertices with each clear 2fi depicted as an edge between the two respective vertices. A CIG can represent
a requirement set of 2fis to be kept clear (requirement CIG), the clear 2fis of a catalogued fraction
(estimability CIG) or the clear 2fis of a blocked design (also called estimability CIG; the distinction
between types of estimability CIG should be apparent from the context). The following wordings will
be used: the requirement set of clear 2fis will be identified with its CIG. It will be said that a design
or fraction “can accommodate the requirement CIG” or “keeps the requirement CIG clear” in order to
express that the fraction or design does not confound main effects or any 2fis from the requirement CIG
with any other main effect, 2fi or block factor main effect. For a fraction or design to keep the requirement
CIG clear, its estimability CIG must contain the requirement CIG as a subgraph (possibly after vertex
permutations, as usual in subgraph isomorphism checks).

Figure 1 shows a requirement CIG with the 10 clear 2fis AB, AC, BC, BD, BE, CD, CF, CG, EF, EG
(the set S2 used by Godolphin). The two different vertex colourings of the figure will be referred to later.
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2.3 Elements of graph theory

This section introduces terminology for graphs, which will be used for dealing with properties of the CIGs.
A graph is an object that consists of n > 0 vertices some or all of which are connected by edges (it is
conceivable but usually boring that a particular graph has no edges whatsoever). In this paper, the edges
do not have a direction, i.e. they are undirected; furthermore, there is at most one edge between two
vertices, and there are no edges from a vertex to itself. We thus consider so-called simple graphs only.
Some terminology is now briefly explained. For background information, see for example Bondy and
Murty (1976).

• If two vertices are connected by an edge, they are called neighbours.
• A clique is a subgraph in which all vertices are pairwise neighbours.
• An independent set is a subgraph which has no edges. It is identified with the set of its vertices.
• For a graph G, its complement Gc denotes the graph for which vertices are neighbours if and only if

they are not neighbours in G.
• Obviously, a clique in G is an independent set in Gc, and vice versa.
• The vertices of a bipartite graph can be partitioned into two independent sets. Analogously, the

vertices of an r-partite graph can be partitioned into r independent sets. Edges only occur between
the independent sets.

• Proper graph colouring refers to colouring the vertices of a graph such that no pair of neighbours
has the same colour (see e.g. Figure 1 for two different proper colourings of the same graph).

• A graph is called r-colourable if it can be properly coloured with r colours. Of course, if a graph is
r-colourable, it is also c-colourable, r < c ≤ n.

• The chromatic number χ(G) of a graph G is the minimum over the r-values for which G is properly
r-colourable, and a graph with chromatic number r is called r-chromatic.

• An r-partite graph is always r-colourable. The reverse is also true: any r-colourable graph is also
r-partite. The graph in Figure 1 is thus both 3-colourable and 3-partite.

• For a complete r-partite graph, all edges between members of different independent sets are present.
• A partition of an r-partite graph into r non-empty independent sets V1, . . . , Vr gives rise to a

length r r-profile P =< n1, . . . , nr >, with n1 ≥ · · · ≥ nr > 0 the cardinalities of the independent
sets. The r independent sets are also called parts.

• The r-profile of a complete r-partite graph is uniquely determined.
• Two graphs are called isomorphic, if they can be obtained from each other by relabelling of vertices.

A graph G2 is isomorphic to a subgraph of a graph G1, if a relabelling of its vertices can be found
such that all vertices and edges of G2 are contained in G1.

• If graphs G1 and G2 have n vertices each, graph G1 is a complete r-partite graph, and graph G2 is
isomorphic to a subgraph of G1, G2 can be partitioned into independent sets according to the same
r-profile as G1 (this is a necessary condition for a subgraph relation).

For some r-colourable graphs, there is exactly one partition into r non-empty independent vertex sets, for
example for complete r-partite graphs. In other cases, there are various possibilities for such partitions,
for example for the 3-partite graph of Figure 1, the two colourings of which correspond to partitions
{{A,D,F}, {B,G}, {C,E}} or {{A, D, E}, {B, F, G}, {C}}. The 3-profiles of these partitions are <3,2,2>
and <3,3,1>, respectively. It can be useful to identify partitions in order to support the search for a
blocking that enables estimation of the required 2fis (see Examples 3 and 7, where Figure 1 will be
re-visited).

2.4 Blocking designs

Designs are blocked in order to control for variation in the experimental material. Regular fractional
factorial 2-level designs can be blocked into 2 k −q blocks of size 2q. Where experimentation uses different
batches of material (for example), a small number of large blocks may be sufficient, e.g. two blocks of size
N/2 (q = k −1) or four blocks of size N/4 (q = k −2). However, it can happen that only smaller blocks
can be made homogeneous enough, for example in case of presenting physical samples to consumers in a
choice set, where individual consumers should be treated as blocks and block sizes should not exceed
eight so that the block factor must have (at least) N/8 levels.

It is customary to assume that
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• the estimates for block factor effects are not themselves of interest,
• block factors do not interact with treatment factors,
• block effects are assumed to be active so that treatment effects confounded with a block degree of

freedom cannot be estimated.

In line with Godolphin (2019), this paper only looks at a single block factor. It is possible to consider
structured blocking, e.g. into Day and Shift per Day. This can be of interest for inspecting block variability
but is not relevant for estimating treatment effects, because interactions between block factors are assumed
to be as important as block main effects. Thus, a situation with four days and two shifts per day would
be handled as a single block factor with eight blocks.

There are two principal approaches for blocking an existing design:

• specify pblock block generators in order to get a block factor with 2pblock levels,
• specify a principal block of size 2q as a sub group of the N runs and obtain 2n−p−q blocks of size 2q

as this group and all its cosets.

R package FrF2 takes the first approach, Godolphin (2019) used the second approach. The two approaches
are equivalent and can be used for constructing exactly the same block structures. Thinking about
construction in terms of Godolphin’s approach is useful especially for small block sizes, because these
correspond to small q.

2.5 Basics of R package FrF2

All calculations for this paper have been done with Version 2.1 of R package FrF2; an earlier version
was described in Grömping (2014a). Function FrF2 produces regular fractional factorial 2-level designs.
Its most basic form is to specify nruns= N = 2n−p and nfactors= n, which will yield an experimental
design based on the MA fraction n–p.1. This is possible, because the package contains a large catalogue
(catlg) of nonisomorphic fractions, which are sorted from good to bad in terms of the MA criterion.

Function FrF2 allows to specify a set of required clear 2fis (argument estimable). The approach for
accommodating this requirement CIG has been described in Grömping (2012, 2014b). The most important
points can be summarized as follows:

• The catalogue catlg contains the estimability CIG for each fraction.
• If a requirement CIG is specified in FrF2, the catalogue of suitable candidate fractions is checked

from best to worst, whether the requirement CIG is a subgraph of the estimability CIG of the
respective fraction.

• The design is constructed from the first (and thus best) successful fraction.

The workhorse function behind this algorithm (mapcalc) will also be used for the algorithm proposed in
this paper. It uses subgraph isomorphism search functionality from package igraph (Csardi and Nepusz
2006).

Function FrF2 furthermore allows to block designs; in the simplest case, users can ask for a number of
blocks, and FrF2 searches for a blocking that does not confound any 2fi. If that cannot be found, users
can permit the confounding of 2fis (alias.block.2fis=TRUE), which will often succeed. Until version
1.7.x, the focus was on larger blocks only, and blocking could not be combined with the functionality
for estimable 2fis described in the previous paragraph. Version 2 of FrF2 introduced the Godolphin
approach for small blocks, and with it the possibility to combine blocking with requiring clear 2fis.

3 Godolphin’s approach for blocking full factorial designs

This section discusses blocking an unreplicated full factorial design in n factors into 2n−q blocks of
size 2q. As preliminary notation, Xq is defined as the set of non-zero columns from GF (2)q; for example,
X2 = {(0, 1)>, (1, 0)>, (1, 1)>}. The cardinality of Xq is 2q − 1.

Godolphin’s idea for block construction is simple: compile a q × n matrix X such that each column is an
element of Xq. Construct a “principal block” of size 2q from X, and obtain the other blocks as cosets of
this principal block.
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Example 1 : For blocking a full factorial in 7 factors (and thus 128 runs) into 16 blocks of size 8 (n = 7,
q = 3),

X =

 1 0 0 1 1 1 1
0 1 1 0 1 0 1
0 1 1 0 0 1 1

 (1)

can be used. The rows of X generate all eight level combinations for the principal block: these are

• an all-zero row (denoted as (1) in Godolphin 2019, here: (0 0 0 0 0 0 0)),
• the rows of X themselves,
• and all sums from two or more rows of X (modulo 2) (here: four sum rows).

When denoting the factors by capital letters (here: A to G), the experimental runs are often denoted by
corresponding small letters (here: a to g) for those factors that take on the value 1 in the run. In this
notation, the principal block thus consists of rows (1), adefg, bceg, bcfg, abcdf, abcde, ef, adg. The other
15 blocks can then be constructed as cosets of this principal block, by adding 15 independent constant
runs to the principal block. Since this paper takes a different approach for constructing the blocks from
the matrix X, dealing with cosets is not further considered.

For finding all treatment factor effects that are confounded with the block factor, denote as F the 2n × n
matrix of full factorial level combinations in 0/1 coding and consider each of its rows as the coding of
an effect. When using the matrix X for blocking a full factorial design, the effects confounded with the
block factor main effect are those that yield a column of zeroes in the matrix XF>.

Example 1, continued: The block factor must have 27−3 = 16 levels, i.e. 15 effects (in addition to the
constant) must be confounded with its main effect. These are the factorial effects BC, AD, ABCD, BEF,
CEF, ABDEF, ACDEF, ABG, ACG, BDG, CDG, AEFG, ABCEFG, DEFG, BCDEFG. We see that no
main effect is confounded with blocks, but two 2fis are confounded with blocks.

From Godolphin (2019), we learn the rules behind this observation:

Lemma 3.1 (compiled from Godolphin). If a full factorial is blocked using the principal block generated
by a q × n X matrix with full row rank and no all-zero columns, the following results hold:

• All main effects are unconfounded with blocks.
• All 2fis of two factors that have the same X column are confounded with blocks.
• All the other 2fis are unconfounded with blocks.

Example 1, continued: As the matrix X in (1) has full row rank and all its columns are non-zero, main
effects are not aliased with blocks. Columns 1 and 4 of X are identical, as are columns 2 and 3; thus, AD
and BC are confounded with the block factor. All other 2fis are unconfounded with blocks.

Example 2 : In the situation of Example 1, Lemma 3.1 implies that we can improve the blocking by
choosing seven different columns for X (which is possible here, because n ≤ 2q − 1 = 7). With

X =

 1 0 0 0 1 1 1
0 0 1 1 1 0 1
0 1 1 0 0 1 1

 , (2)

we get the preferable block confounded set BCD, ABCE, ADE, ABF, ACDF, CEF, BDEF, ACG, ABDG,
BEG, CDEG, BCFG, DFG, AEFG, ABCDEFG and can thus keep all 2fis clear.

For actually creating the blocked design, k − q independent block generators are needed: In Examples 1
and 2, as blocks of size 23 = 8 are needed, the block factor must have 27−3 = 16 levels. It can be created
using any four independent block confounded effects as generating contrasts, e.g. BCD, ABCE, ABF,
ACG for Example 2.

Each column of the X matrix corresponds to an experimental factor. The X matrix thus partitions the
factors into parts according to the element of Xq that is assigned to the factor: there are up to 2q − 1
non-empty parts. The sorted vector of part sizes is called the profile of X. For example, the profiles
induced by the X matrices (1) and (2) are <2,2,1,1,1,0,0> and <1,1,1,1,1,1,1>, respectively. Zeroes are
often omitted from the profile.
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3.1 Profiles and estimability CIGs

Lemma 3.1 implies that the estimability CIG of a full factorial blocked according to a rank q X matrix
without all-zero columns is a complete r-partite graph, where r is the number of different columns in X
(at most 2q − 1). Correspondingly, there is a unique partition of the estimability CIG into r independent
sets, which coincides with the partition obtained from X, and the r-profile of the blocked design’s
estimability CIG equals the profile of X. A graph of the 2fis that are aliased with blocks contains exactly
the independent sets from the estimability CIG as cliques. Figures 2 and 3 visualize both the aliased
2fis and the estimability CIGs for four different 3-profiles for 13 factors: Figure 2 shows the 2fis that
are confounded with blocks, while Figure 3 shows the estimability CIGs of the blocked designs. The
edges present in Figure 2 are exactly those edges that are missing in Figure 3, and the factor partition
corresponding to the profile directly implies which edges are of which type. All four CIGs are complete
3-partite graphs and thus have unique profiles. The colouring in Figure 2 corresponds to the colouring in
Figure 3 and is (of course) not a proper colouring in the sense defined in Section 2.3.

3.2 Number of two-factor interactions unconfounded with the block main
effect

With seven factors, it was possible to keep all 2fis clear in a full factorial with blocks of size 8. Had we
wanted to block eight instead of seven factors into blocks of size 8, it would no longer be possible to keep
all 2fis clear, because there are only 23 − 1 = 7 potential vectors for X. Godolphin (2019, Theorem 2)
provided an upper bound for the number of clear 2fis from blocking a full factorial in n factors into blocks
of size 2q:

φmax =
(
n

2

)
− vw − (2q − 1)

(
v

2

)
, (3)

with v = [n/(2q − 1)] and w = n− (2q − 1)v, where [·] denotes the floor function.

For n = 8 and q = 3, i.e. 8 factors in blocks of size 8, Formula (3) yields φmax = 27; thus, at least one of
the 28 possible interactions is confounded with blocks. With the X matrix approach, it is straightforward
to influence which interaction is sacrificed: assign identical columns in X to those two factors whose
interaction is least important.

In generalization of formula (3), Godolphin (2019) provided a formula for the number of clear 2fis in a
blocked full factorial based on the profile < n1, . . . , n2q−1 > (see end of her section 2): there are

2q−2∑
i=1

2q−1∑
j=i+1

ninj (4)

clear 2fis. It is straightforward to see this, as this is the number of between-part edges in the full
2q − 1-partite graph with part sizes n1 to n2q−1. For example, the complete 3-partite graph with the
profile <6,6,1> has 6 · 6 + 6 · 1 + 6 · 1 = 48 clear 2fis (see also Figure 3). Formula (4) works without
change, if only r < 2q − 1 elements of Xq occur in X, by setting profile components nr+1, . . . , n2q−1 = 0.
Formula (3) gives the number of edges in a 2q − 1-partite graph with n vertices and maximally balanced
profile: if w = 0, all parts have size v, and φmax subtracts the number of (non-clear) within part edges
from the total number of pairs. If w > 0, the most balanced setup consists of 2q − 1− w parts of size v
and w parts of size v + 1; for the latter, vw additional edges must be subtracted. Thus, if interest is in
obtaining a blocked design with as many clear 2fis as possible, the largest and smallest frequencies of
columns of Xq used in X should differ by at most 1 (including zeroes for absent elements of Xq).

Table 2 shows the numbers of 2fis that can be kept clear in full factorial designs for n = 3, . . . , 28 in
blocks of sizes 22, 23 or 24 for the overall most balanced profile (these are simply the φmax values) and
for the most balanced profile attainable that keeps all 2fis of a single factor or of two specific factors
clear (headers <. . . ,1> and <. . . ,1,1>, respectively). For n ≤ 15 factors, blocks of size 16 trivially allow
a unique Xq element for each factor, so that all 2fis can be kept clear. For n ≤ 7, this is also possible
with block size 8 (see Example 2), and for n = 3 even with block size 4. Note that profiles <5,4,4>
and <6,6,1> in Figures 2 and 3 correspond to the table entries for thirteen factors in blocks of size 4 in
columns “best” and “<. . . ,1>”, respectively.
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Profile <5,4,4>

A

B

C
D

E

F

G
H

J

K

L

M N

22 2fis confounded with blocks

Profile <7,3,3>

A

B

C

D

E

F

G

H

J
K

L
M

N

27 2fis confounded with blocks

Profile <6,6,1>

A

B

C

D

E

F

G

H

J

K
L

M

N

30 2fis confounded with blocks

Profile <9,3,1>

A B
C

D

E

F
G

H
J

K

L
M

N

39 2fis confounded with blocks

Figure 2: 2fis aliased with the block main effect for four different blockings of the 13 factor full factorial
into blocks of size 4. Note: these are not CIGs, but the complements of CIGs.
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Profile <5,4,4>

A

B

C

D

E

F

G

H

J

K

L

M

N

56 clear 2fis

Profile <7,3,3>

A

B

C

D

E

F

G

H

J

K

L

M

N

51 clear 2fis

Profile <6,6,1>

A

B

C

D

E

F

G

H

J

K

L

M

N

48 clear 2fis

Profile <9,3,1>

A

B

C

D

E

F

G

H

J

K

L

M

N

39 clear 2fis

Figure 3: Estimability CIGs for the designs of Figure 2
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Table 2: Maximum numbers of clear 2fis for n factors in blocks of sizes 4, 8 and 16 for three types of
profiles
n 2fis best <...,1> <...,1,1> n 2fis best <...,1> <...,1,1>

4 8 4 8 4 8 4 8 16 4 8 16 4 8 16
3 3 3 3 3 3 3 3 16 120 85 109 119 71 108 119 29 107 119
4 6 5 6 5 6 5 6 17 136 96 123 134 80 122 134 31 121 134
5 10 8 10 8 10 7 10 18 153 108 138 150 89 137 150 33 135 150
6 15 12 15 11 15 9 15 19 171 120 154 167 99 153 167 35 150 167
7 21 16 21 15 21 11 21 20 190 133 171 185 109 169 185 37 166 185
8 28 21 27 19 27 13 27 21 210 147 189 204 120 186 204 39 183 204
9 36 27 34 24 34 15 34 22 231 161 207 224 131 204 224 41 201 224
10 45 33 42 29 42 17 42 23 253 176 226 245 143 223 245 43 219 245
11 55 40 51 35 51 19 51 24 276 192 246 267 155 243 267 45 238 267
12 66 48 61 41 61 21 61 25 300 208 267 290 168 264 290 47 258 290
13 78 56 72 48 72 23 71 26 325 225 289 314 181 285 314 49 279 314
14 91 65 84 55 83 25 82 27 351 243 312 339 195 307 339 51 301 339
15 105 75 96 63 95 27 94 28 378 261 336 365 209 330 365 53 323 365

3.3 Keeping specific two-factor interactions clear

The most fundamental result is the following:

Lemma 3.2 (Godolphin, Lemma 1). The requirement CIG can be accommodated in a full factorial
design in blocks of size 2q if and only if it is 2q − 1-colourable.

For accommodating a particular requirement CIG in the blocked design, the requirement CIG must
be a subgraph of the estimability CIG of the blocked design, which is a complete r-partite graph with
partitions according to the columns of the X matrix that was used for blocking. This implies that X must
be chosen such that the parts of the blocked design correspond to valid parts of the requirement CIG.

If interest is in a particular set of clear 2fis, obtaining the largest possible number of clear 2fis may not be
appropriate. For example, if one wants to conduct a full factorial in 13 factors in blocks of size 4 keeping
all 2fis of two particular factors clear, the unique profile of the requirement CIG is <11,1,1>, and Table 2
tells us that there can only be 23 clear 2fis, which corresponds to exactly the 2fis with the two particular
factors.

Hence, the construction of a suitable matrix X for accommodating the requirement CIG in the blocked
design corresponds to a graph colouring exercise for the requirement CIG, with each colour corresponding
to a particular element of Xq, following the rules from Lemma 3.1: if possible, it is always best to find
a 2q − 1 partition of the requirement CIG (even if a smaller number of parts would suffice). Blocking
the full factorial based on an X matrix that is compatible with this partition will then ensure that the
requirement CIG can be accommodated in the resulting complete 2q − 1-partite estimability CIG of the
blocked design. If the requirement CIG permits more than one 2q − 1-partition, the most balanced one
should be chosen in order to maximize the number of clear 2fis in the blocked design.

Example 3 : A full factorial design is to be blocked into blocks of size 4, such that the requirement CIG
of Figure 1 is kept clear. The two colourings correspond to profiles <3,2,2> and <3,3,1>, respectively.
Since the profile <3,2,2> is maximally balanced, it is an ideal choice. The 3-partition corresponding to
the profile is {{A,D,F},{B,G},{C,E}}. Using vectors (0, 1)>, (1, 0)>, and (1, 1)> in this order,

X =
(

0 1 1 0 1 0 1
1 0 1 1 1 1 0

)
. (5)

The blocked design keeps 16 2fis clear, i.e., it confounds 5 2fis with the block main effect. The 10 2fis
from the requirement CIG of Figure 1 are among the clear 2fis.

There are some obvious restrictions to what is possible:
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• Whenever a requirement CIG contains a clique of size c, its chromatic number is at least c. Thus,
if for example all interactions within a set of four factors are requested to be clear, blocking into
blocks of size 4 = 22 is not possible, because the chromatic number of the requirement CIG exceeds
22 − 1 = 3.

• If a requirement CIG contains all 2fis of a single factor, the chromatic number of the subCIG for
the other n− 1 factors must be one less than the required chromaticity. This can be iterated; thus,
– if all 2fis involving two specific factors are to be estimated in blocks of size 4, the remaining

factors must be singletons in the requirement CIG,
– if all 2fis involving three specific factors are to be estimated in blocks of size 8, the requirement

subCIG of the remaining n− 3 factors must be 4-colourable (4 = 23 − 1− 3),
– and so forth.

Godolphin formulated several sufficient conditions for a requirement CIG to be compatible with 2n−q blocks
of size 2q; these are not repeated here.

4 Blocking fractional factorial designs

This section deals with blocking a fraction of 2n−p runs in n factors into 2n−p−q blocks of size 2q. The
results from the previous section on full factorials remain valid, regarding which 2fis are confounded with
the block factor, given a particular X matrix (see Lemma 4.1 below). It is, however, more complicated
to obtain an X matrix that is suitable for creation of a principal block, and there may be confounding
among 2fis even in the unblocked fraction. The following lemma states the consequences from blocking a
fraction if a valid matrix X can be found:

Lemma 4.1. Let F denote a 2n−p×n fraction for n factors, and let Z denote the p× ( n −p) confounding
matrix of F . Suppose that a q × n matrix X = (XI|XIZ>) with columns from Xq can be found. We have
the following results:

(i) F can be blocked into blocks of size 2q without confounding main effects with blocks.
(ii) The estimability CIG of the blocked fraction is the intersection between the estimability CIG of F

and the estimability CIG of the full factorial blocked according to X.

4.1 Feasible X matrices and profiles, and numbers of clear 2fis

When blocking designs that already have confounding among their treatment factors, not every X matrix
can be used for creating the principal block:

• Only n− p columns of the q × n X matrix can be freely chosen from the columns of Xq, w.l.o.g.
the first ones. In line with Godolphin (2019), we denote the first n− p columns of X as XI.

• The remaining p columns of X – denoted as XII – must be calculated such that they comply with
the design’s confounding structure. This is done by applying the design’s generating contrasts to
the columns of the matrix XI, using the confounding matrix Z.

Example 4 : A design in 256 runs with 13 factors is to be run in 64 blocks of size 4. The resolution V
MA fraction 13–5.1 from the catalogue catlg has the generating contrasts J=ABCDEFG, K=ABCDH,
L=ABEFH, M=ACEGH and N=ADFG. The p× (n− p) = 5× 8 confounding matrix Z is

Z =


1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 1
1 1 0 0 1 1 0 1
1 0 1 0 1 0 1 1
1 0 0 1 0 1 1 0

 . (6)

From an arbitrary q × (n− p) = 2× 8 matrix

XI =
(

1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1

)
(7)
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(columns labelled with letters A to H), the corresponding q × p = 2× 5 matrix

XII = XIZ> =
(

1 0 1 1 0
0 0 1 1 1

)
(8)

(columns labelled with letters J to N) is obtained, and the entire matrix is then X = (XI
...XII). Remember

that matrix multiplication is modulo 2. We see an all-zero column in X in the position of factor K. Thus,
blocking a full factorial with this X matrix would confound the main effect of factor K with the block
effect, which is undesirable (but see the discussion). Hence, XI from (7) is not suitable for blocking the
fraction.

Unfortunately, it is by no means straightforward to specify sufficient conditions for the existence of a
matrix X that is assumed in Lemma 4.1, not even for resolution V fractions. Godolphin (2019) applied a
search for such X matrices as follows:

• Fix the first column of XI, and inspect all (2q − 1)n−p−1 possible picks of n− p− 1 columns from
Xq for the remaining positions of XI.

• For each XI, obtain XII = XIZ>, and inspect it for all-zero columns. Discard the case, if an all-zero
column is found.

• If XII is acceptable, obtain X = (XI
...XII) and inspect the profile it implies.

A slightly more efficient approach is implemented in package FrF2: since it does not matter which column
from Xq is used for which colour, one can not only fix the first column, but can also restrict the cth
column to at most c choices, so that the number of combinations to be checked can be reduced from
(2q − 1)n−p−1 to (n− p)! for n− p ≤ 2q − 1 and to (2q − 1)!(2q − 1)n−p+1−2q otherwise. Choices with
fewer than q different columns in X are discarded as well as choices with all-zero columns in XII.

Example 4, continued: For blocking the fraction 13–5.1 into blocks of size 4, 3! · 35 = 1458 XI matrices
need to be inspected. The automated search of package FrF2 yields

X =
(

0 1 1 1 0 0 0 0 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 0 1 1

)
. (9)

Blocking a design with this X matrix aliases all within part 2fis for the partition {(A,E,F,G,H), (B,J,K,L,N),
(C,D,M)} with the block factor and keeps all between part 2fis orthogonal to block factor effects. As the
fraction has resolution V, all the 2fis not confounded by the block factor are clear, so that the number of
clear 2fis can still be calculated like for blocked full factorial designs. As the X matrix implies the profile
<5,5,3>, there are 5 · 5 + 5 · 3 + 5 · 3 = 55 clear 2fis (one less than in the most balanced profile <5,4,4>,
which is not compatible with the confounding structure of the fraction). As an aside, note that the only
profiles compatible with the fraction are <5,5,3>, <7,3,3>, <7,5,1> and <9,3,1>. The catalogue in R
packge FrF2 contains a single fraction only for 256 run designs. Example 10 in Appendix D provides a
custom set of generating contrasts for which a larger variety of profiles can be obtained, among them the
most balanced profile.

For fractions of resolution V, obtaining X is the only complication: since the fraction keeps all 2fis clear,
any confounding of 2fis arises as confounding with the block factor. For resolution IV fractions, there are
already some non-clear 2fis to start with: all pairs of factors that occur in at least one defining word or
derived word of length 4 are not clear. According to Lemma 4.1, the number of clear 2fis for the blocked
fraction is at most the minimum of (4) and the number of clear 2fis from the unblocked fraction.

Example 5 : A 32 run design in 7 factors is to be blocked into blocks of size 4. A full factorial in 7 factors
allows 16 clear 2fis (see Example 3), i.e. the blocked full factorial confounds 5 2fis. The unblocked fraction
7–2.1 has 15 clear 2fis; the best blocked fraction has 12 clear 2fis, i.e. 3 less than the upper bound obtained
from blocked full factorial and unblocked fraction. The X matrix has the profile <3,2,2>, but the number
of clear 2fis can of course no longer be calculated from this information. The fraction 7–2.1 is the only
resolution IV fraction for seven factors in 32 runs. Thus, it is not possible to keep more than 12 2fis clear
when blocking a resolution IV fraction into blocks of size 4.

Example 6 : Blocking the fraction 13–6.1 into blocks of size 4, the maximum number of achievable clear
2fis is 52. The automatically created design is obtained with
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X =
(

0 1 1 1 0 1 0 1 1 1 1 1 0
1 0 1 1 1 1 1 0 0 1 0 1 1

)
(10)

(profile <5,4,4>) and has the 52 clear 2fis AC, AD, AF, AH, AJ, AK, AM, BC, BD, BE, BF, BG, BK,
BM, CE, CG, CH, CJ, CL, CN, DE, DG, DH, DJ, DL, DN, EF, EH, EJ, EK, EL, EM, FG, FH, FJ, FL,
FN, GH, GJ, GK, GL, GM, HK, HM, HN, JK, JM, JN, KL, KN, LM, MN. The full factorial blocked
with this X matrix would keep 56 2fis clear. Twelve 2fis of the unblocked fraction are not clear, among
them AB, AL, BN and LN, which would have been clear in a blocked full factorial with the X from (10).
Thus, the estimability CIG of the blocked fraction is slightly worse than that of a blocked full factorial.
It has been checked (see the code in the appendix) that the number of clear 2fis cannot be improved by
using a different resolution IV fraction.

4.2 Estimability requirements

The following lemma states necessary conditions for blocking while keeping specified 2fis clear:

Lemma 4.2. Let F denote a fraction of resolution at least IV that is to be blocked into blocks of size 2q,
while keeping a requirement CIG G clear. The following conditions are necessary:

(i) The fraction F keeps the requirement CIG G clear, i.e. the estimability CIG of F contains a subgraph
that is isomorphic to G.

(ii) The requirement CIG G is 2q − 1-colourable.
(iii) Blocking F into blocks of size 2q permits a 2q − 1-profile that corresponds to a valid 2q − 1-profile of

the requirement CIG.

Condition (i) is equivalent to Godolphin’s C1. It implies that the algorithm may restrict the search to
fractions that keep the requirement CIG clear. Because of Lemma 3.2, condition (ii) is necessary even
for blocking a full factorial in n factors into blocks of size 2q, which implies necessity for blocking F .
Condition (iii) follows from the fact that the requirement CIG must be isomorphic to a subgraph of the
estimability CIG.

Condition (iii) of the lemma is a real constraint. This is demonstrated by inspecting the profiles that can
be obtained from blocking the four best 128 run fractions for 13 factors into blocks of size 4 (13–6.1 with
66 clear 2fis, 13–6.2 with 66 clear 2fis, 13–6.3 with 60 clear 2fis and 13–6.4 with 60 clear 2fis): Table 3
shows their feasible profiles. The MA fraction allows fewer profiles than 13–6.2 and 13–6.4, but more
than 13–6.3. Fraction 13–6.3 is the only one with a profile that contains a “1” element, i.e. that can
accommodate a requirement CIG with all 2fis of a selected factor clear. All fractions offer the maximally
balanced profile <5,4,4>, which only confounds 22 2fis with blocks in a full factorial, but confounds
between 26 and 34 2fis in these four fractions (see Example 6 for the best one). The third fraction offers
the fewest profiles, among them however two that cannot be produced by any of the other three fractions.
Note that a full factorial would have 14 possible profiles that involve all three vectors of X2; five of these
do not occur for any of the four fractions; it has been verified that these can be obtained from other
catalogued resolution IV fractions. For blocks of size 8 (not in the table), the fraction 13–6.4 yields all
possible 7-profiles. The fractions with smaller aberration cannot produce all of these: fractions 13–6.1 to
13–6.3 cannot obtain the <7,1,1,1,1,1,1> and <4,4,1,1,1,1,1> profiles, fraction 13–6.1 additionally cannot
obtain the most balanced profile <2,2,2,2,2,2,1>.

According to Lemma 4.1, the estimability CIG of the blocked design is the intersection of the estimability
CIGs of the blocked full factorial and of the unblocked fraction. If a fraction is to be blocked while
accommodating a requirement CIG, we can either regard this as accommodating a requirement CIG in
the estimability CIG from a blocked fractional factorial, or as blocking a fractional factorial that has
been tailored to accommodate the requirement CIG.

The former approach was taken by Godolphin: she provided catalogues of templates for blocking fractions
into blocks of size 4, by listing factor partitions corresponding to feasible X matrices. For resolution
V fractions, her catalogues contain at most one entry for each profile. For resolution IV fractions,
there may be more than one entry, and the templates also list 2fis that are confounded in the fraction
although they would be unconfounded in the blocked full factorial. Based on the templates, it is then the
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Table 3: Profiles obtainable from four 128 run fractions for 13 factors, when blocked into blocks of size 4
13–6.1

3 3 7
3 4 6
3 5 5
4 4 5
. . .
. . .
. . .

13–6.2
2 3 8
2 4 7
2 5 6
3 3 7
3 4 6
3 5 5
4 4 5

13–6.3
1 4 8
1 6 6
4 4 5
. . .
. . .
. . .
. . .

13–6.4
2 3 8
2 4 7
2 5 6
3 3 7
3 4 6
3 5 5
4 4 5

1

2
3

4

5

6
7

Figure 4: Estimability CIG of the unblocked MA fraction 7-2.1, coloured in terms of the successful
mapping for Example 7 (this is of course no proper colouring for this CIG). The generating contrasts
for the fraction are: factor 6 from the 3-factor interaction of factors 1, 2, and 3 and factor 7 from the
4-factor interaction of factors 1, 2, 4, and 5.

practitioner‘s task to find an appropriate allocation of experimental factors such that the requirement
CIG is accommodated (which can be quite tedious, especially for the resolution IV case).

In this paper, fractions are pre-filtered for compatibility with the requirement CIG. Blocking is attempted
only for those fractions whose unblocked version can accommodate the requirement CIG; these are
identified with the algorithm described in Grömping 2012. Subsequently, for every X matrix, a subgraph
isomorphism check determines whether the requirement CIG can be accommodated in the estimability
CIG of the blocked design. The entire process is automated, so that users are freed from the tedious
and error-prone task of working out a suitable allocation of experimental factors. If the algorithm is
unsuccessful for the candidate, a new search among catalogued fractions with worse aberration can be
triggered.

Example 7 : Like in Example 3, the requirement CIG of Figure 1 is to be kept clear. Instead of a full
factorial with 128 runs, we now use the MA quarter fraction 7–2.1, blocked into eight blocks of size 4
(q = 2). The estimability CIG of the unblocked fraction is shown in Figure 4, coloured according to the
successful mapping found by the algorithm. All the necessary conditions of Lemma 4.2 are satisfied; for
condition (iii), see Example 5, where a blocking of fraction 7–2.1 with profile <3,2,2> was obtained,
which corresponds to the left-hand side colouring of the requirement CIG in Figure 1. The algorithm
implemented in FrF2 returned the mapping A:1, B:4, C:7, D:2, E:5, F:3, G:6, together with an X matrix
that corresponds to the profile <3,3,1>, i.e. the profile of the right-hand side graph in Figure 1, with
the partition {{A,D,E}, {B,F,G}, {C}}. With this partition and X columns ordered according to the
map, any XI matrix (for requirement CIG columns A D F B E in this order) corresponding to the
requirement CIG profile yields the entire X matrix for blocking the fraction through the combination
with XII = XIZ> (modulo 2) (for factors G and C, in this order), as usual. The matrices are as follows:
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XI =
(

0 0 1 1 0
1 1 0 0 1

)
, Z =

(
1 1 1 0 0
1 1 0 1 1

)
, X =

(
0 0 1 1 0 1 1
1 1 0 0 1 0 1

)
. (11)

Note that the column order of the matrix Z is not remapped but corresponds to the original factor order
in the fraction 7–2.1.

Example 8 : Nine factors are to be accommodated in 64 runs with blocks of size 4. They consist of seven
control factors C1 to C7 and two noise factors N1 and N2. All interactions of noise factors with control
factors are to be kept clear. The requirement CIG is obviously 3-colourable (it is even 2-colourable, one
colour for noise factors and one colour for control factors would suffice). The unblocked fraction 9–3.1 is
able to accommodate the requirement CIG. It can also be suitably blocked. Note that a suitable blocking
can only be found because a subgraph isomorphism check is done for each X matrix during the search
process (see code in the appendix).

Example 9 : An experiment in 13 factors is to be conducted in 128 runs in blocks of size 4. All interactions
with one particular factor are to be kept clear. The requirement CIG is 2-chromatic and thus of course
3-colourable (i.e. condition (ii) of Lemma 4.2 is fulfilled). It can be accommodated in various unblocked
fractions, among them 13–6.1, 13–6.2, 13–6.3 and 13–6.4 (i.e. condition (i) of Lemma 4.2 is fulfilled for
these fractions). For condition (iii) of Lemma 4.2, note that all valid partitions for the requirement CIG
have to keep the particular factor in a part of its own, i.e. all valid profiles of the requirement CIG have
to have at least one element that is “1”. Thus, as can be seen from Table 3, the fraction 13–6.3 has MA
among fractions that fulfil the necessary condition (iii) of Lemma 4.2. With suitable choice of an X
matrix, a blocked design based on fraction 13–6.3 keeps a total of 36 2fis clear. The maximum possible
number for a full factorial blocked according to the most balanced profile with a singleton would be 48
(see Table 3). A search over all 197 blocked fractions whose estimability CIG contains the requirement
CIG showed that a few more clear 2fis are possible from fraction 13–6.16. It is then the user’s decision
whether to prefer the fraction 13–6.3 with the better MA behavior or the fraction 13–6.16 with more
clear 2fis.

Note that the successful fraction 13–6.3 of Example 9 is dominated, i.e. its estimability CIG is a subgraph
of the estimability CIG of a fraction with less aberration. Based on a proposal by Wu, Mee and Tang
(2012), Grömping (2014b) improved the algorithm of Grömping (2012) by restricting the search to
dominating fractions, i.e. fractions that are not dominated. This brought about a substantial efficiency
gain for larger problems. Consequently, many 128 run dominated fractions, among them 13–6.3, were
excluded from the standard catalogue catlg of package FrF2. For the blocking application, Example 9
and Table 3 showed that a dominated fraction can yield the best solution. Luckily, larger catalogues
including dominated fractions are available in the auxiliary package FrF2.catlg128; these should be
used instead of the standard catalogue for blocking 128 run fractions (see also the code for Example 9 in
Appendix C).

5 The algorithm and its implementation in R package FrF2

A resolution IV or higher fraction for n factors in N = 2n−p = 2k runs is to be blocked into 2k−q blocks
of size 2q, such that many 2fis are clear, or such that a requirement CIG can be accommodated. Figures 5
and 6 give a high-level overview of the algorithm implemented for this purpose: Figure 5 describes
the selection of eligible candidate fractions; for full factorials, or where a requirement CIG is specified,
only a single candidate is selected. The algorithm then loops over the selected candidates; for each
candidate in the list, the algorithm of Figure 6 is applied. In case of success for the current candidate,
the search finishes successfully. Otherwise the algorithm switches to the next candidate fraction. Where
a requirement CIG is specified and the single candidate was not successful, step 11 of Figure 6 can be
followed with re-entering step 3 of Figure 5, eliminating the failed candidate from the eligible fractions.
At present, this restart has to be manually triggered.
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1.
N = 2k

and
n ≤ k?

2. return
full factorial

as candidate

3. compile eligible fractions
for n factors in N  runs

from catalogue, sorted by MA

4.
Is there a

requirement
CIG ?

5. return candidate
list from 3.

6. apply algorithm from
Grömping (2012)

7. success ?

8. return
successful fraction

as candidate
including map

9. report failure

yes no

no yes

yes no

Figure 5: The algorithm for selecting one or more candidate fraction(s), given n, N, q, and possibly a
requirement CIG
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Current candidate fraction 1.
i = 1

2. Create i th
XI matrix

3. Calculate XII

4.
Is X OK?8.

i = i + 1

9.
i  too large?

5.
maximum possible

clear 2fis?

10.
empty

possibilities
list?

11.
next

candidate
fraction?

7. store X in
possibilities

list

12. return
blocked design

with most clear 2fis

6. return
blocked design

no

no

yes

yes

noyes

yes

no

Figure 6: The algorithm for blocking a candidate fraction. For keeping the diagram simple, the check
in step 4. includes the check for the requirement CIG, if applicable. This check involves a subgraph
isomorphism check whether the requirement CIG is a subgraph of the estimability CIG of the blocked
design.
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5.1 Full factorial without a requirement CIG

The automatic algorithm will quickly return a blocked design with φmax clear 2fis. The factor partition
will place the first min(2q − 1, n) factors in separate parts (let us number them as 1, . . . , 2q − 1). For more
than 2q − 1 parts, factor i will be placed in part i modulo 2q − 1 (where 0 corresponds to part 2q − 1).

Alternatively, the user can manually create a suitable X matrix with desired properties and create a
design from it using R function FF_from_X.

Failure to create a blocked design may be caused by resource problems (N = 2n becomes large very fast).

5.2 Full factorial with a requirement CIG

The automatic algorithm starts from the default without a requirement CIG, and afterwards loops through
X column choices according to the approach described in Section 4.1, with the first components moving
fastest. For each X, a subgraph isomorphism check will indicate whether the requirement CIG can be
accommodated in the estimability CIG. In case of success, the algorithm returns a blocked design with the
maximum possible number of clear 2fis that arises from the most balanced partition of the requirement
CIG (see e.g. Example 3).

The process may be slow, if the requirement CIG is such that early X choices cannot accommodate the
blocking, or (of course) if the requirement CIG cannot be accommodated in blocks of size 2q. Especially
for large full factorials and requirement CIGs that are easily understood, it may thus be advisable to
manually create a suitable X matrix with desired properties, e.g. using R function X_from_parts.

The algorithm fails if the requirement CIG has a chromatic number larger than 2q − 1, or for resource
reasons.

5.3 Fractional factorial without a requirement CIG

For k = n− p, the sequence of XI matrices is obtained in the same way as the sequence of X matrices for
the full factorial case. X matrices for which XII contains any all-zero columns are discarded, as are X
matrices with fewer than q different columns. If all XI matrices are exhausted without finding a suitable
blocking, the next candidate fraction is processed. In case of success, the algorithm returns the blocking
with the largest number of clear 2fis from the first (=MA) candidate for which a blocking was found.
There may be fractions with worse aberration that would allow more clear 2fis. The code for Example 6
in Appendix C exemplifies how to check, whether the number of clear 2fis can be improved.

The algorithm will not fail, as long as n ≤ 2n−p−1 (i.e., a resolution IV fraction exists), except for resource
reasons. However, for too large p or too small q, there may be no or too few clear 2fis.

5.4 Fractional factorial with a requirement CIG

Initially, the internal function mapcalc applies the algorithm of Grömping (2012) for finding a fraction
that can accommodate the requirement CIG (step 6 of Figure 5). Subsequently, the algorithm loops
through XI matrices in the same way as in Section 5.3, with an additional subgraph isomorphism check
whether the blocked design obtained with the X matrix can accommodate the requirement CIG. For
resolution IV fractions, a separate subgraph isomorphism check for each X matrix can be switched off; in
that case, the algorithm attempts to block the current fraction in the map order obtained from the initial
check in step 6 of the algorithm of Figure 5. While this may save computational effort and may thus
make some cases feasible that would otherwise lead to resource problems, it does sacrifice potential and
will therefore not be further discussed.

If the algorithm is successful, the blocked design is based on the MA element of the eligible fractions
provided in step 3 of the algorithm of Figure 5 whose unblocked version is able to accommodate the
requirement CIG. The number of clear 2fis in the successfully blocked design is maximal among all
possible X matrices for blocking this fraction. There may be another fraction with worse aberration
which can accommodate the requirement CIG with the requested block size while yielding more clear 2fis.
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According to Lemmata 4.1 and 4.2, failure of the algorithm can mean at least one of three things:

(i) There is not even an unblocked candidate fraction (i.e., the algorithm of Figure 5 has failed to
return a candidate).

(ii) Blocks of size 2q have been requested, but the requirement CIG has a chromatic number higher
than 2q − 1.

(iii) Even though none of the above hold, a suitable X matrix without all-zero columns cannot be found
based on the current candidate fraction that was returned by the algorithm of Figure 5.

Failures of type (i) produce an error message that starts with The required interactions cannot be
accomodated clear of aliasing .... Such failures can only be solved by increasing the number of
runs or removing some edges from the requirement CIG (or by enhancing a catalogue; for example, for
256 runs, the built-in catalogue only contains MA fractions n–p.1).

Failures of types (ii) or (iii) produce an error message that starts with no adequate block design
found. Whether no adequate block design was found because of a failure of type (ii) or (iii) can be
visually checked by plotting the requirement CIG (e.g. with function CIG from package FrF2, ideally
in interactive mode). (There is currently no reliable algorithm in R that automates this task.) If the
requirement CIG is 2q − 1-colourable, the failure must be of type (iii).

A failure of type (iii) implies that the blocking task might be solvable with a different candidate fraction.
For attempting a solution along this road, the algorithm of Figure 5 can be started again after removing
the failed fraction from the eligible fractions in step 3. We already met an example of this kind as
Example 9 with 13 factors in 128 runs in blocks of size 4. In this example, errors of type (iii) occurred for
fractions 13–6.1 and 13–6.2, and were remedied by removing those fractions from the candidate list and
repeating the algorithm. Where such a restart is necessary, it is useful to run step 6 of the algorithm of
Figure 5 without the efficiency improvement of Grömping (2014b), because dominated fractions can be
very promising for the blocking task (e.g. 13–6.3).

It is somewhat inconvenient that the automatic search is restricted to only a single fraction that can
accommodate the requirement CIG and fails if this fraction cannot be successfully blocked. After gaining
more experience with the algorithm, this decision may be revised. For the time being, automation is
possible outside of function FrF2: Appendix C shows code for Example 9 with which a search over
more fractions can be automated. That code also exemplifies how to use catalogues from R package
FrF2.catlg128, which is necessary because the most successful fraction 13–6.3 is not in catalogue catlg,
but only in the larger catalogue catlg128.8to15 from that package.

6 Discussion

Godolphin (2019) proposed a powerful tool that allows to combine blocking a full factorial or a fraction
into small blocks with keeping a set of selected 2fis (the requirement CIG) clear, or with maximizing
the number of clear 2fis. She provided a selection of templates obtaining blocks of size 4, from which
practitioners can work out how to accommodate their specific needs. The algorithm presented in this
paper automates the process, using a sorted catalogue of fractions, which stores the estimability CIG
with each fraction. If a requirement CIG is specified, the proposed algorithm uses the algorithm by
Grömping (2012) for selecting a candidate fraction. The subsequent application of the blocking approach
by Godolphin makes use of subgraph isomorphism checking again and returns the most adequate blocking
of this fraction, if one exists. Otherwise, the process has to be repeated with the next suitable fraction.

For the algorithm of this paper, it is advisable to conduct the algorithm by Grömping (2012) without
the efficiency improvement from Grömping (2014b): the restriction to dominating fractions that was
proposed in Grömping (2014b) can deteriorate the result, as was for example seen in Example 9, where
the most successful fraction was a dominated one.

The proposed algorithm relies on the availability of a catalogue of fractions. For 256 runs and more, the
catalogue in R package FrF2 so far contains the MA fractions n–p.1 only. This limits the applicability
of the algorithm to find the best possible blocking for the situation at hand, as there are often better
choices than the MA fraction. Catalogues of more fractions in 256 and more runs – e.g. the ones available
from Hongquan Xu’s website in support of his 2009 paper – will be made available for R package FrF2
(possibly in another separate auxiliary package), for supporting the blocking methodology. While these
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are not yet available, hand-picked elements from external catalogues can be used; these need to be cast
as a catalogue object (see Example 10 in Appendix D).

For unblocked fractions, MA is universally accepted as a suitable quality criterion. The fraction, on which
a blocked design from the algorithm proposed in this paper is based, has MA for the treatment factors
among all fractions that fulfil the requirements (block size and possibly a requirement CIG) and keeps
2fis clear as much as possible within the successful fraction. Quality criteria have also been proposed for
blocked designs (see Godolphin 2019 and references therein). However, there is no criterion that is as
universally agreed as the MA criterion for unblocked designs. For example, Sun, Wu and Chen (1997)
discussed that a suitable blocked design must be adapted to the experimental situation. The blocked
designs returned by the proposed algorithm have not been investigated in terms of any adapted aberration
criteria for blocked designs.

The entire paper focused on constructing a block factor such that treatment factor main effects are
unconfounded with the block factor main effect. However, with a large number of small blocks in a
relatively large design, one can also adopt a split-plot approach that allocates some factors at the block
level only. While this is detrimental for the inference regarding the affected factors, it may still be a
suitable route to choose and may sometimes even be unavoidable (e.g., because some factors can only
be changed at the block level). Designs of this nature are called split-plot designs. It is of interest to
investigate whether their automated creation can also benefit from using Godolphin’s approach based on
X matrices with selected all-zero columns.
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Appendix

A: Fractions used in this paper

The following fractions have been used in Examples 4 to 9, and Tables 1 and 3.
catlg["6-2.1"] ## Table 1

## Design: 6-2.1
## 16 runs, 6 factors,
## Resolution IV
## Generating columns: 7 11
## WLP (3plus): 0 3 0 0 0 , 0 clear 2fis
catlg["13-5.1"] ## Example 4

## Design: 13-5.1
## 256 runs, 13 factors,
## Resolution V
## Generating columns: 127 143 179 213 105
## WLP (3plus): 0 0 3 12 12 , 78 clear 2fis
## Table 3 and Examples 6 and 9
catlg128.8to15[c("13-6.1", "13-6.2", "13-6.3", "13-6.4", "13-6.12", "13-6.16")]

## Design: 13-6.1
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 85 44 86
## WLP (3plus): 0 2 16 18 , 66 clear 2fis
## Factors with all 2fis clear: E G H J K
## Design: 13-6.2
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 85 46 61
## WLP (3plus): 0 2 16 20 , 66 clear 2fis
## Factors with all 2fis clear: D E G J L
## Design: 13-6.3
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 49 74 124
## WLP (3plus): 0 3 12 24 , 60 clear 2fis
## Factors with all 2fis clear: K
## Design: 13-6.4
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 85 44 82
## WLP (3plus): 0 3 14 17 , 60 clear 2fis
## Factors with all 2fis clear: A H J
## Design: 13-6.12
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 81 44 82
## WLP (3plus): 0 4 10 22 , 57 clear 2fis
## Factors with all 2fis clear: H J K
## Design: 13-6.16
## 128 runs, 13 factors,
## Resolution IV
## Generating columns: 31 103 43 49 74 62
## WLP (3plus): 0 4 12 22 , 57 clear 2fis
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## Factors with all 2fis clear: C J K
catlg["7-2.1"] ## Examples 5 and 7

## Design: 7-2.1
## 32 runs, 7 factors,
## Resolution IV
## Generating columns: 7 27
## WLP (3plus): 0 1 2 0 0 , 15 clear 2fis
## Factors with all 2fis clear: D E G
catlg["9-3.1"] ## Example 8

## Design: 9-3.1
## 64 runs, 9 factors,
## Resolution IV
## Generating columns: 7 27 45
## WLP (3plus): 0 1 4 2 0 , 30 clear 2fis
## Factors with all 2fis clear: D E F H J

B: Relevant function arguments, functions and objects in R package FrF2

The most elementary functions (see Example 3) are

• X_from_parts for the creation of an X matrix from a partition (=list of parts) and
• FF_from_X for the creation of a blocked full factorial from an X matrix.

These light-weight functions can be used for manual handling of full factorials. Function FF_from_X
returns a proper class design object, like all design-generating functions from the package suite to which
FrF2 belongs.

For more heavy-weight implementations involving fractions and requirement CIGs, function FrF2 imple-
ments the entire design creation in an automated way. Its most relevant arguments are

• the number of runs nruns
• the number of factors nfactors
• optional: design for the fraction to be blocked (name of catalogue element; in that case, nruns

and nfactors are not needed)
• optional: generators for the fraction to be blocked (cannot be combined with the estimable

functionality)
• optional: a vector of factor names factor.names (not necessary, but very helpful in case factors

are permuted)
• optional: a number of blocks or other ways of specifying block generation (e.g. block generators),

blocks
• optional: alias.block.2fis=TRUE for permitting the block effect to be aliased with 2fis
• optional: block.name
• optional: a specification of 2fis to be kept clear, estimable (assuming that the default argument

clear=TRUE is not changed)

The internal functions mapcalc and mapcalc.block are the workhorse functions behind the estimability
functionality of function FrF2. Step 6 of the algorithm’s candidate search portion uses function mapcalc
for identifying candidate fractions that can accommodate the requirement CIG, and a suitable map for
them. Function mapcalc.block is used in Step~4 of the algorithm of Figure~6; its use can be deactivated
for resolution IV fractions (useV=FALSE argument); in that case, the map returned by function mapcalc
is used throughout the algorithm of Figure 6, see Example 8). Further functions can support users who
want to closely inspect some details or want to try to improve the number of clear 2fis after a successful
run of FrF2:

• phimax calculates the upper bound from formula (3) or the number (4).
• colpick is the work horse function behind the algorithm of Figure 6: it returns the X matrix which

is then post-processed by function FrF2 in the automated blocking process. Optionally, the function
can be requested to return not only the most successful X matrix but all successful X matrices for
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a given candidate fraction; this can e.g. be useful for making sure the number of clear 2fis is as
large as possible. The function does not only return the X matrix but also the resulting set of clear
2fis, and possibly a mapping that indicates how to permute factor names in order to ascertain a
requested estimability pattern (element map, see Example 7 for detail). Caution: When requesting
all successful matrices, or where the blocking request cannot be satisfied, the function may take a
long time, whenever k = n− p and/or q is large.

• The internal function colpickIV is the work horse function behind the algorithm of Figure~6 for
resolution IV fractions, if a user decides to switch off the subgraph isomorphism check for each
X (useV=FALSE in function FrF2). The function uses the initial map from step 6 of Figure 5
throughout.

• blockgencreate calculates block generators from an X matrix and design generating information.
It can be used for creating a suitable blocks argument in calls to function FrF2, if one wants to
manually block a design with a self-selected X matrix.

• CIG depicts a requirement or estimability CIG (or any other graph that can be represented as an edge
list in a form understood by the function). It can be used for manually inspecting a requirement
CIG for its chromatic number or a suitable partition.

• clear.2fis extracts the clear 2fis (in matrix form) from a catlg object, nclear.cfis the number
of clear 2fis.

• generators extracts the generating contrasts in human-readable form from a catlg object.
• X_from_parts provides an X matrix from a partition (used for Example 3);
• X_from_profile provides an X matrix from a profile; its columns are sorted by part size (largest

part in front).
• Xcalc calculates an X matrix from an XI matrix together with a generator or a catlg object. This

function is of academic interest; it will usually not be needed for design creation.

The following objects support their use:

• catlg is the standard catalogue of fractional factorial 2-level designs.
• With package FrF2.catlg128, an extensive set of further 128 run catalogues in different numbers

of runs are provided. These help, for example, in finding the clear design of Example 9.
• Yates is a list of Yates matrix column vectors (e.g. c(1,2,3) for ABC) in the positions where they

belong for Yates order (see Table 1).
• Letters is a vector of upper and lower case letters for factor names; the letters “I” and “i” are

missing from the vector, because their use as factor names can be confusing.

C: R code for examples

Examples 1 to 6

Example 1 used a naïve X matrix for blocking a full factorial design with seven factors into blocks of
size 8.
## Example 1
X <- rbind(

c(1,0,0,1,1,1,1),
c(0,1,1,0,1,0,1),
c(0,1,1,0,0,1,1)

)
## all effects that are aliased with blocks
FrF2:::blockgengroup(X)
## block generators
blockgencreate(X)
## create the design
FF_from_X(X)

Example 2 used an optimal X matrix for blocking a full factorial design with seven factors into blocks of
size 8. colpick(7,3)$X would find a different such matrix.
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## Example 2
X <- rbind(

c(1,0,0,0,1,1,1),
c(0,0,1,1,1,0,1),
c(0,1,1,0,0,1,1)

)
## all effects that are aliased with blocks
FrF2:::blockgengroup(X)
## block generators
blockgencreate(X)
## create the design
FF_from_X(X)

Example 3 manually created a suitable X matrix for blocking a full factorial in seven factors such that
the requirement CIG of Figure 1 is kept clear. The code for doing this with package FrF2:
X <- X_from_parts(7,2,list(c("A","D","F"), c("B","G"), c("C","E")))
summary(FF_from_X(X))

## function FrF2 also yields such a design (a different but isomorphic one)
summary(FrF2(128, 7, factor.names=Letters[15:21],

estimable=requ, alias.block.2fis = TRUE, blocks=32))

Example 4 initially used a naïve XI matrix for blocking the MA fraction 13–5.1 into blocks of size 4.
# J="ABCDEFG", K="ABCDH", L="ABEFH", M="ACEGH", N="ADFG")
Z <- rbind(

c(1, 1, 1, 1, 1, 1, 1, 0),
c(1, 1, 1, 1, 0, 0, 0, 1),
c(1, 1, 0, 0, 1, 1, 0, 1),
c(1, 0, 1, 0, 1, 0, 1, 1),
c(1, 0, 0, 1, 0, 1, 1, 0)
)

XI <- rbind(
c(1,1,1,1,1,0,0,0),
c(0,0,0,1,1,1,1,1)

)
XII <- (XI%*%t(Z))%%2
X <- cbind(XI, XII)

A better X matrix was obtained using the search algorithm of function colpick.
X <- colpick("13-5.1", 2)$X

Example 5 illustrated the numbers of clear 2fis for the unblocked fraction 7–2.1, the blocked full factorial
in seven factors, and the blocked fraction 7–2.1.
## unblocked fraction
nclear.2fis(catlg["7-2.1"])
## blocked full factorial with blocks of size 4
phimax(7, 2)
## blocked fraction
length((coll <- colpick("7-2.1", 2))$clear2fis)
## inspect profile
coll$X

Example 6 inspected blocking the resolution IV fraction 13–6.1 into blocks of size 4, without a requirement
CIG .
## find best X matrix for blocking fraction, block size 2^2
col_ex6 <- colpick("13-6.1", 2)

27



## number of clear 2fis
length(col_ex6$clear2fis)

## the X matrix
col_ex6$X

## the design (32 blocks of size 4)
desEx6 <- FrF2(128, 13, design="13-6.1", blocks=32, alias.block.2fis = TRUE)

## number of confounded 2fis of the fraction
choose(13,2) - nclear.2fis(catlg["13-6.1"])

## words of length 4 of the fraction
FrF2:::words.all(7, catlg[["13-6.1"]]$gen, max.length = 4)

## two disjoint words, implying six non-clear 2fis each
## the word ABLN (1,2,11,13) causes the confounding of
## clear 2fis from the blocked full factorial

Function FrF2 would also have used the fraction 13–6.1 without specifying it in the design argument.
There are four less clear 2fis than for the full factorial. One might have attempted an improvement with
the code below, but none was found.
nn2 <- names(catlg128.8to15[nruns(catlg128.8to15)==128 &

nfac(catlg128.8to15)==13])
target <- phimax(13,2)
nccur <- 0
fraccur <- character(0)
system.time(for (nam in nn2){

#print(nam)
suppressMessages({

now <-
length(colpick(nn2, 2, select.catlg=catlg128.8to15)$clear2fis)

if (now > nccur) {
nccur <- now
fraccur <- nam

}
if (now==target) break

})
})
nccur

Examples 7 and 8

Example 7 refers to the requirement CIG of Figure 1, which was created with the code below.
requ <- c("AB","AC","BC","BD","BE","CD","CF","CG","EF","EG")
par(mfrow=c(1,2), mar=c(0,0,0,0))
## ADF CE BG

CIG(requ, vertex.size=30,
vertex.color=c(light, middle, dark, light, dark, light, middle),
vertex.frame.color=c(light, middle, dark, light, dark, light, middle),
vertex.label.color=c("black","black","white","black","white",

"black","black"),
vertex.label.font=2, vertex.label.family="sans",
static=TRUE, layout=igraph::layout_as_tree, root=3)

## ADE BFG, C
CIG(requ, vertex.size=30,

vertex.color=c(light, middle, dark, light,light, middle, middle),
vertex.frame.color=c(light, middle, dark, light,light, middle, middle),
vertex.label.color=c("black","black","white","black","black",

"black","black"),
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vertex.label.font=2, vertex.label.family="sans",
static=TRUE, layout=igraph::layout_as_tree, root=3)

The X matrix and column mapping was produced with the command
coll <- colpick("7-2.1", 2, estimable=requ)

The code below illustrates how to verify that this indeed yields an appropriate solution.
## Z-matrix for the unblocked fraction
## original column order
Z <- t(sapply(catlg[["7-2.1"]]$gen,

function(obj) rev(sfsmisc::digitsBase(obj, 2, 5))))

## coll$X implies the profile 3,3,1
## i.e. partition {{A,D,E}, {B,F,G}, {C}}

## the map element of coll implies
## column allocations
# A:1, B:4, C:7, D:2, E:5, F:3, G:6

# A(1) in the same part with D(2) and E(5), columns 1, 2 and 5
# B(4) in the same part with F(3) and G(6), columns 3 and 4
# C(7) alone in a part, column 7

## reproduce
XI.4_RHS <- rbind(c(0,0,1,1,0), ## RHS

c(1,1,0,0,1))
X.4_RHS <- cbind(XI.4_RHS, (XI.4_RHS%*%t(Z))%%2)
## additional column respect the profile

For Example 8, blocking the fraction 9–3.1 is successful but would fail when suppressing subgraph
isomorphism search for each X (useV=FALSE).
requEx8 <- compromise(9,8:9, class=4)$requirement
fn <- c(paste0("C",1:7), paste0("N", 1:2))
## suppressing subgraph isomorphism checking for individual
## X matrices makes the algorithm fail
## (useV=FALSE does that)
nosuccess <- FrF2(64,9, blocks=16, estimable=requEx8,

factor.names=fn, alias.block.2fis = TRUE,
useV=FALSE)

## the default with subgraph isomorphism checks is successful
des64blocked4 <- FrF2(64,9, blocks=16, estimable=requEx8,

factor.names=fn, alias.block.2fis = TRUE,
useV=TRUE)

Example 9

This example illustrates how to handle cases for which the default attempt is unsuccessful. The MA
fraction accommodates the requirement CIG, but cannot be blocked with an appropriate profile. Solutions
can be searched for by looping over potential candidate fractions. For less complicated problems,
it would also be possible to manually remove the failed fraction(s) from select.catlg, e.g. with
select.catlg=catlg[-(1:which(names(catlg)=="13-6.1"))].

Within catalogue catlg, the 11th element 13–6.12 is the first to accommodate the requirement CIG with
the requested blocking. A better design, based on the fraction 13–6.3, can be found from searching within
the larger catalogue catlg128.8to15 from R package FrF2.catlg128. Code for both searches is shown
below.
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requEx9 <- compromise(13,1)$requirement

## no success
nosuccess <- FrF2(128,13, blocks=32, factor.names=Letters[15:27],

estimable=requEx9, alias.block.2fis = TRUE)

## loop through designs from catlg
nn1 <- names(catlg[nruns(catlg)==128 & nfac(catlg)==13])
for (nam in nn1){

suppressMessages(
des128fromcatlg <- try(

FrF2(design=nam, blocks=32,
factor.names=Letters[15:27], estimable=requEx9,
alias.block.2fis = TRUE),

silent=TRUE)
)

## stop at first success
if (!"try-error" %in% class(des128fromcatlg)) break

}
## found 13-6.12
## worse aberration than the optimum possible
## see below
design.info(des128fromcatlg)
## has 36 clear 2fis (78 - 34 aliased with block - 8 aliased)

## loop through designs from catlg128.8to15
nn2 <- names(catlg128.8to15[nruns(catlg128.8to15)==128 &

nfac(catlg128.8to15)==13])
for (nam in nn2){

suppressMessages(
des128fromcatlg128 <- try(

FrF2(design=nam, blocks=32,
factor.names=Letters[15:27], estimable=requEx9,
select.catlg = catlg128.8to15,
alias.block.2fis = TRUE),

silent=TRUE)
)

## stop at first success
if (!"try-error" %in% class(des128fromcatlg128)) break

}
design.info(des128fromcatlg128)
## has 48 2fis unconfounded with blocks (78 - 30 - 12)
## 36 2fis clear

## checking whether there is a design with more clear 2fis
ncV <- suppressMessages(

sapply(nn2, function(obj){
hilf <- try(length(colpick(obj, 2, select.catlg = catlg128.8to15,

estimable=requEx9)$clear2fis), silent=TRUE)
if ("try-error" %in% class(hilf)) return(NA) else return(hilf)

})
)

table(ncV, useNA = "ifany")
which.max(ncV) ## 13-6.16, 40 clear 2fis
ncV[ncV>=36]
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D: Worked Example 10

The code below casts the resolution V fraction 13–5.2 from Hongquan Xu’s website into a class catlg
object, for use in functions colpick or FrF2. The fraction has more and entirely different profiles than
fraction 13–5.1 (which has profiles <5,5,3>, <7,3,3>, <7,5,1> and <9,3,1>); it thus is compatible with
different requirement CIGs. The resulting blocked design has 56 clear 2fis, using the most balanced
profile.
gen <- c(127,143, 179, 85, 150) ## from Xu website
names(Yates)[gen]

## [1] "ABCDEFG" "ABCDH" "ABEFH" "ACEG" "BCEH"
## prepare named list
## (for self-made generator, could use x instead of 2
## in the name),
## WLP entries start with length 1
## nclear.2fis and clear.2fis for resolution V and higher
## are trivial
## dominating for resolution V and higher is FALSE
## for non MA fractions
mycatlg <- list("13-5.2"=list(nruns=256, nfac=13, gen=gen,

WLP=c(0,0,0,0,5,10,10),
res=5, nclear.2fis=choose(13,2),
clear.2fis=combn(13,2),
dominating=FALSE))

## assign class catlg to make it usable for the functions
class(mycatlg) <- c("catlg", "list")
colll <- colpick("13-5.2", 2, all=TRUE, select.catlg = mycatlg)

## checking up to 1458 matrices
unique(colll$profiles)

## [[1]]
## [1] 2 3 8
##
## [[2]]
## [1] 2 2 9
##
## [[3]]
## [1] 3 4 6
##
## [[4]]
## [1] 2 5 6
##
## [[5]]
## [1] 2 4 7
##
## [[6]]
## [1] 4 4 5
summary(descustom <- FrF2(256, 13, blocks=64, select.catlg = mycatlg, alias.block.2fis = TRUE))

## checking up to 1458 matrices

## Call:
## FrF2(256, 13, blocks = 64, select.catlg = mycatlg, alias.block.2fis = TRUE)
##
## Experimental design of type FrF2.blocked
## 256 runs
## blocked design with 64 blocks of size 4
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##
## Factor settings (scale ends):
## A B C D E F G H J K L M N
## 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 2 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## Design generating information:
## $legend
## [1] A=A B=B C=C D=D E=E F=F G=G H=H J=J K=K L=L M=M N=N
##
## $`generators for design itself`
## [1] J=ABCDEFG K=ABCDH L=ABEFH M=ACEG N=BCEH
##
## $`block generators`
## [1] BC ABD ABE BF AG AH
##
##
## no aliasing of main effects or 2fis among experimental factors
##
## Aliased with block main effects:
## [1] AG AH AM BC BF BJ BN CF CJ CN DE DK DL EK EL FJ FN GH GM HM JN KL
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