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The Sleeping Beauty Problem Demystified
Ulrike Grömping
23 March 2019

Abstract
A perfectly rational Sleeping Beauty is put to sleep on Sunday night, and intermittently awoken

either on Monday only (if a fair coin shows Heads) or on both Monday and Tuesday (if the fair coin
shows Tails). According to experimental conditions, she neither remembers previous awakenings
nor knows about passage of time, but she is aware of experimental conditions. Her credence for
the coin having come up Heads is at the center of a scientific (mostly philosophical) controversy:
halfers insist it should be 1/2, while thirders claim it should be 1/3. Winkler (2017) reviewed the
literature, in terminology accessible to statisticians. This paper presents a comprehensive treatment
of the probability side of the problem, from the perspective of a frequentist applied statistician.
Perceived contradictions are resolved (in line with Groisman 2008) or traced back to violation of
model assumptions. Modeling was at the heart of the confusion and is also at the heart of the solution.

MSC2000: Primary: 62A01. Secondary: 62C99, 60A05
Keywords: Probability Dilemma, Probability Paradox, Conditional Probability, Decision Theory, Monte
Carlo simulation, Sleeping Beauty Problem.

1 Introduction: The Sleeping Beauty Problem

Elga (2000) popularized a decision-theoretic problem that sparked a division of philosophers and probability
theorists into “halfers” and “thirders”, and a growing number of dualists. The latter claim that both
camps are correct, because they interpret the problem in different ways that can both be justified.
Groisman (2008) introduced the dualist perspective, titling “The end of Sleeping Beauty’s nightmares”.
Beauty’s sleep, whether with or without nightmares, did not end with his work, but continued to be widely
discussed. This paper extends Groisman’s take on the problem, using a frequentist applied statistics
perspective. Contrary to Groisman, however, the author is a convinced halfer (but without missionary
zeal).

The Sleeping Beauty problem is a probability dilemma which, after more than a decade of scientific
discussion, still does not have a universally agreed solution, contrary to the well-known Monty Hall
problem1 for which all serious scientists agree on the correct solution (if they agree on the model
assumptions). The philosophical literature uses both problems as a test ground for various theories (see
e.g. Mann and Aarnio 2018 for a recent contribution on both the Monty Hall and the Sleeping Beauty
problem). The present paper resolves the probability aspects of the Sleeping Beauty problem; the problem
will no doubt remain of interest to philosophers.

Recently, Winkler (2017) gave an overview of the discussion of the Sleeping Beauty problem that is
– contrary to many other works in the field – accessible to mathematicians or statisticians who are not
deeply involved in philosophical reasoning; readers are referred to this source for a review. This paper
will only work with a small selection of references. Winkler (2017) stated the problem as follows:

Sleeping Beauty agrees to the following experiment. On Sunday, she is put to sleep, and a
fair coin is flipped. If it comes up Heads, she is awoken on Monday morning; if Tails, she is
awoken on Monday morning and again on Tuesday morning. In all cases, she is not told the
day of the week, is put back to sleep shortly after, and will have no memory of any Monday

1The Monty Hall problem was first introduced by Selvin 1975, and was popularized in 1990 in the journal Parade by
columnist Marylin vos Savant who answered a reader question. In the standard version of the problem, the game show
host Monty Hall shows three closed doors to a contestant, and tells the contestant that there is a luxury car behind one
of the doors and a goat behind each of the other two doors. The contestant is asked to pick a door, and picks one. Now,
Monty Hall opens one of the other two doors and presents a goat to the contestant. Subsequently, the contestant is offered
the choice to switch to the other closed door or to stick with the original pick. It is advantageous to switch, because the
probability for the already picked door to contain the car remains 1/3, while the new information increases the probability
for the car to be behind the other door to 2/3 (provided that Monty Hall never spoils the game by opening the picked door
or the door that hides the car).
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Figure 1: Visualization of the Sleeping Beauty problem with n laboratory days D1, . . . , Dn and A for
awakening, A for not awakening. The coin is tossed before the beginning of the experiment.
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Figure 2: Visualization of the Sleeping Beauty problem with n laboratory days D1, . . . , Dn and A for
awakening, A for not awakening. The coin is tossed after the certain awakening on D1.

or Tuesday awakenings. When Sleeping Beauty is awoken on Monday or Tuesday, what – to
her – is the probability that the coin came up Heads?

— Winkler (2017)

Bostrom (2007) generalized the number of laboratory days from two (Monday and Tuesday) to n ≥ 2, in
order to demonstrate perceived implausibilities, when increasing n. In this extended setting, Beauty is
still awoken only on the first experimental day if the coin comes up Heads and on all n experimental days
if the coin comes up Tails. All other experimental conditions also apply without change: in particular
the “no memory” condition applies to all awakenings. Figure 1 illustrates the extended experiment from
Winkler’s quote, Figure 2 a slight modification thereof in which the coin toss does not happen before but
after the Monday (D1) awakening, which should be possible and inconsequential because the actions on
Monday (D1) do not depend on the outcome of the coin toss (but beware that this modification may
interfere with what assumptions may appear plausible to Beauty).

In many accounts of the Sleeping Beauty problem, two questions are considered:

• Question 1 (already part of the quoted setup by Winkler). On any instance of an awakening,
which probability (or credence) should Beauty assign to the coin having come up Heads?

• Question 2. On a Monday (or D1) awakening, which probability (or credence) should Beauty
assign to the coin having come up Heads, if she gains the additional (and credible) information that
today is Monday (or D1)?

Winkler omitted Question 2 from the definition of the Sleeping Beauty problem but also considered the
corresponding probability in a part of his discussion.

This paper equates credence to probability, assuming that a canonical Bayesian would request the credence
to be chosen as the probability, if a probability can be derived. We assume that Beauty is perfectly
rational in that sense.

The division into thirders (e.g. Elga 2000) and halfers (e.g. Lewis 2001) is based on Question 1: thirders
answer that question with 1/3 for n = 2, and 1/(n + 1) in general, while halfers generally answer it
with 1/2. The main argument of halfers is: Beauty does not get new information from knowing that
she is awake now, because she knew all along that she would be woken during the experiment; thus
prior information (fair coin) should be upheld. Winkler (2017) summarized various arguments that have
been brought forward as justification of the thirders’ view, the most prominent one being an indifference
argument among awakenings, derived from symmetry considerations. Halfers and thirders also give
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different answers to Question 2. As was mentioned before, Bostrom (2007) introduced the extension of
the Sleeping Beauty problem to n instead of only two experimental days; he found fault with both Elga’s
and Lewis’ lines of reasoning and argued that the thirders’ answer 1/(n+ 1) to Question 1 as well as the
halfers’ answer n/(n+ 1) to Question 2 (see Section 5) yields very implausible results for large values of
n; he proposed a hybrid model – in a terminology that is inaccessible to this author – which answers 1/2
to both questions, regardless of n. He is thus a so-called double-halfer.

Luna (forthcoming) concisely summarized the most frequently emphasized aspect of the conflicting
positions on Question 1:

The strong law of large numbers and considerations concerning additional information strongly
suggest that Beauty upon awakening has probability 1/3 to be in a heads-awakening but
should still believe the probability that the coin landed heads in the Sunday toss to be 1/2.

— Luna (forthcoming, quote from preprint)

He employed the philosophical distinction between ordinary and centered worlds for resolving the apparent
contradiction.

The present paper constrains itself to ordinary probability theory and applied statistics, without employing
centered worlds or other philosophical concepts not easily accessible to an applied statistician. The goals
are

• to provide a few simple probabilistic models that explain each of the proposed answers to Questions 1
and 2 and relate to Beauty’s potential assumptions on what exactly she knows. The simplest model
is deterministic for everything except the coin toss. Two further models employ different randomness
assumptions on how Beauty’s current awakening day arises.

• to clarify the different perspectives on Question 1 that one can take, sharpening the contribution of
Groisman (2008) who argued that halfers and thirders give correct and valid answers to different
questions, so that their points of view are not contradictory.

• to explicitly relate the classical arguments by Elga (2000) and Lewis (2001) to the probability
models of this paper, and to illustrate the causes for the long-standing confusion around the Sleeping
Beauty problem.

Various sources tried to justify the correctness of their camp using betting or gambling; however, this
brings along specifications, depending on which events trigger which outcomes. For example, if Beauty
wants to be correct often (e.g. because of a per-awakening reward), she should pick T all the time; this is a
setting for which the thirders’ answer (under the “outcome population” perspective, see Section 4) would
suit her needs. Mutalik (2016a) emphasized that proponents of all camps agreed on correct solutions,
as soon as such concretizations were added to the problem. We will therefore not consider the betting
approach.

The problem is interesting for the statistical community because it shows that modeling assumptions are
extremely important and that using applied statistics for problems like this can help untangle arguments
that are much harder to resolve solely by probability calculus or philosophical discourse. The route to
adequate modeling is supported by thinking about appropriate Monte Carlo simulation of the problem.
Therefore, simulation of the models is always considered along with the models themselves. This is a
two-way street: simulation makes it easier for an applied statistician like this author to understand the
Sleeping Beauty problem, and the performance of naïve simulation approaches can serve as a caveat on
paying attention to the experimental setup in simulations for real applications.

Draper (2017), referring to the Oscar Seminar (2008, “An objectivist argument for thirdism”), asked for
more objectivist involvement in answering the Sleeping Beauty problem, and expressed the expectation
that the problem would remain difficult even for objectivists. Cisewski et al. (2016) proposed a very
general model that is able to accomodate arbitrary knowledge Beauty may bring into her credence (like
aches, pains or bodily functions at the current awakening) at the expense of making it hard to directly
connect it to previous works. The present paper can be seen as a more pragmatic objectivist attempt by
an applied statistician (based on frequentist probability theory) at explaining all aspects of the Sleeping
Beauty problem, without allowing information from outside the direct experimental context to enter the
picture. Section 2 introduces notation and sample space considerations. Sections 3 and 4 concentrate
on Question 1: Section 3 discusses Beauty’s potential assumptions and relates them to models, and
Section 4 discusses which different probabilities Beauty can target (sharpening the Groisman (2008)
point). Section 5 discusses answers for Question 2 and explicitly relates the models of this paper to the
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classsical reasoning by Elga (2000) and Lewis (2001). Section 6 summarizes the assessments of the three
possible pairs of answers to Questions 1 and 2, and the final section remarks on the steps taken to resolve
the confusion about the Sleeping Beauty problem, aspects that make the problem difficult and the role of
applied statistics and simulation in relation to the Sleeping Beauty problem.

2 Notation, sample space, and events for capturing Beauty’s
knowledge

∧ denotes conjunction, ∨ disjunction, and 1condition denotes an indicator that yields 1 if the condition is
true and 0 otherwise. This paper writes events as sets, and thus uses set notation for combining events
(∩ for intersection, ∪ for union, and × for Cartesian product). A conditional probability of event A given
event B is denoted as P (A|B).

A parsimonious view on the sample space is deterministic, apart from the coin toss outcome:

Ω1 = Ωcoin = {H,T}. (1)

Both elements of this sample space have probability 1/2, and they have a one-to-one correspondence to
the corresponding experimental trajectories that are depicted in Figures 1 and 2. This sample space is
sufficient without any further assumptions, as long as one is only interested in the probability of the initial
coin toss being Heads, and as long as Beauty believes that she has not gained additional information by
being awake, because she knew in advance that she would be awoken. Days and individual awakenings
are included in Ω1 through the deterministic trajectories. Credences involving days can be derived from
applying an indifference principle to a reasonable selection of cases of interest (see also Sections 3.2
and 5.2).

Whenever Beauty wants to incorporate additional information regarding the day of her awakening, or
wants to work out proper probabilities about events that relate to awakening days, a more detailed sample
space is asked for:

Ω2 = Ωcoin × Ωday = {H,T} × {D1, . . . , Dn}
= {(H,D1), . . . , (H,Dn), (T,D1), . . . , (T,Dn)}
= {(ω1, ω2) : ω1 ∈ Ωcoin ∧ ω2 ∈ Ωday}.

(2)

Furthermore, according to the experimental rules, awakening functions A and Aexperiment are defined on
this sample space as follows:

A : Ω2 → {0, 1}
(ω1, ω2) 7→ 1{ω1=T ∨ ω2=D1},

(3)

Aexperiment : Ω2 → {0, 1}
(ω1, ω2) 7→ 1.

(4)

Note the rationale for function Aexperiment: it yields the value 1 if and only if Beauty is awoken at least
once in the experiment; it treats every sampled element as a representative of its trajectory; since both
potential trajectories contain an awakening with certainty, Aexperiment assigns the value 1 to every element
of the sample space. The purpose of this function is to make the sample space compatible with Beauty’s
knowledge about the overall experiment, in spite of sampling a single day only from the experimental
trajectory.

For use in models that are based on Ω2, the following events are defined:

H = {ω ∈ Ω2 : ω1 = H},
T = {ω ∈ Ω2 : ω1 = T},

Di = {ω ∈ Ω2 : ω2 = Di},
Aday = {ω ∈ Ω2 : A(ω) = 1} = {ω ∈ Ω2 : ω1 = T ∨ ω2 = D1},

Ai = {ω ∈ Ω2 : A(ω) = 1 ∧ ω2 = Di},
AL = {ω ∈ Ω2 : Aexperiment(ω) = 1} = Ω2.

(5)
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H and T, as well as Di have the obvious meanings. AL is the event that Beauty is awoken in the laboratory
during the experiment, which happens with probability 1. Aday is the event that Beauty is awoken today,
i.e. she is in an awakening day of the experiment; however, under the experimental conditions of memory
loss and ignorance of which day she is in, today does not convey information over and above the fact that
Beauty is in a combination of day and coin toss that implies an awakening. While AL is something that
Beauty knew from the start, her knowledge can be seen to be Aday, when actually being awake during
the experiment. Should she, by any chance, learn that the current day is Di, while being awake, her
knowledge would become Ai. We can also handle Ω1 as isomorphic to Ω2 by employing the σ-algebra
{∅,H,T,Ω2} on Ω2, and we can therefore also use events H and T under Ω1.

When considering a series of N experiments, this paper will use the shortened expressions “Heads
experiment” or “Tails experiment” for experiments in the series for which the coin toss outcome was
Heads or Tails, respectively. Furthermore, an awakening that occurs during a Heads experiment is called
a Heads awakening.

3 Beauty’s assumptions, and implied models

The one doubtlessly random experiment in the Sleeping Beauty problem is the toss of the fair coin (on
D0 or after the D1 awakening), which implies

P (H) = P (T) = 0.5. (6)

Given the result of this random experiment, Beauty’s awakening(s) occur(s) according to deterministic
rules, and D1 to Dn occur deterministically one after the other, as was shown in Figures 1 and 2.

3.1 Beauty’s assessment of her own knowledge

If Beauty assesses her knowledge to only consist of AL (she has been woken in the experiment at least
once), no update of her prior belief is warranted, because AL is the certain event, regardless how the
sample space is modelled.

If Beauty believes that her knowledge is Aday, i.e. she is currently in an awakening day of the experiment,
implications of that knowledge depend on whether or not Beauty incorporates the experimental setup
(which she is aware of in all accounts of the Sleeping Beauty problem) into her assumptions:

If she does, she has to assign unequal probabilities to the elements of Ω2 (as proposed by Lewis 2001),
either because of hierarchical indifference assumptions within Model M1 or as outlined in Model M2
below. This yields the halfers’ answer.

Otherwise, she can apply indifference over awakening days (outside of probability theory within ModelM1,
as proposed by Elga 2000) or use a probability model that ignores the experimental setup (see Model M3).
This yields the thirders’ answer.

This author works on experimental design; thus, in her view, a fully rational approach has to incorporate
the experimental setup.

3.2 Days remain deterministic (Model M1)

Model M1 assumes an equiprobable pick from Ω1 (i.e. toss of the fair coin) only, with the corresponding
experimental trajectory arising in due course. The simulation of Nsimul trajectories under the deterministic
assumption (M1) proceeds as follows: Simulate Nsimul coin toss outcomes and record the corresponding
trajectories.

If Beauty believes that all she knows is that she was awoken during the experiment, standard probability
theory can provide her probability: P (H|AL) = 1/2, because AL is the certain event.

If Beauty pictures herself in one of the n+ 1 possible awakening settings (those that would be part of
Aday when considering the sample space Ω2) and applies an intuitive indifference principle, she can assess
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the probability of picking a Heads awakening from the population of awakenings produced by a series of
experiments, as 1/(n+ 1) (see Section 5.2 for Elga’s symmetriy argument for this indifference).

Alternatively, Beauty can picture herself in the experiment, consider herself with probability 1/2 in the
Heads branch and therefore with probability 1/2 in the single possible Heads awakening (so far, it’s
probability theory), whereas she optionally applies a non-probabilistic indifference argument to the Tails
awakenings for each of which she assesses the chance 1/n given Tails, and thus 1/(2n) overall (see also
Model M2 for a probability-based version of this aproach). Thus, she can assess the probability for H,
given an awakening day as 1/2, even when solely using probability theory, without any formal conditioning
(no new information obtained).

3.3 Unequal probabilities on Ω2 = Ωcoin × Ωday (Model M2)

Beauty pictures herself in each of the two equiprobable experimental trajectories; given the trajectory
(=̂coin toss outcome), she pictures herself in a random pick of possible awakening days. Of course, given
Heads, she is certain that it must be D1, given Tails she makes a uniform random assumption over
D1, . . . , Dn. The justification of this assumption is more plausible if the coin is tossed before Beauty’s
current awakening, thus Figure 2 should not be assumed for this variant. Simulation of Nsimul elements
of Ω2 under this conditional uniform distribution of awakening days given coin toss (Model M2) proceeds
as follows:

• Simulate Nsimul coin toss outcomes,
• and pick the awakening day as D1 for each H toss and as a random element from Ωday for each T

toss.

The conditional sampling of awakening days implies that P (Aday) = 1. The elements of Ω2 have the
following probabilities:

P (Ai ∩ T) = P ({(T,Di)}) = P (T ∩ Di) = 1/(2n) for i = 1, . . . , n,
P (A1 ∩ H) = P ({(H,D1)}) = P (H ∩ D1) = 1/2,
P (Ai ∩ H) = P ({(H,Di)}) = P (H ∩ Di) = 0 for i = 2, . . . , n.

(7)

The probabilities in (7) coincide with those stated by Lewis for n = 2. Probability calculus trivially yields
P (H|AL) = P (H|Aday) = 1/2. As an aside, within this model (which implicitly conditions on awakening),
marginal probabilities for specific awakening days are

P (A1) = P (D1) = n+ 1
2n , P (Ai) = P (Di) = 1

2n, i = 2, . . . , n,

i.e. P (A1) = 3/4 and P (A2) = 1/4 for n = 2.

3.4 Equal probabilities within Ω2 = Ωcoin × Ωday (Model M3)

Beauty pictures herself in every laboratory day (not restricted to awakening days) with the same
probability:

P (Di) = 1/n, i = 1 . . . n. (8)

Every day is independently combined with the experimental coin toss, which implies equiprobable elements
of Ω2:

P (ω) = 1/(2n) for each ω ∈ Ω2. (9)

Simulations of Nsimul elements of Ω2 under the unconditional uniform assumption on the distribution of
laboratory days proceeds as follows: Independently simulate

• Nsimul coin toss outcomes uniformly from Ωcoin,
• Nsimul days uniformly from Ωday.
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Note: For larger n, Nsimul must be made quite large in order to achieve enough samples from individual
laboratory days (needed for Question 2).

In Model M3, considering the entire experiment at once, each sampled element of Ω2 has to be treated
as a representative of the entire trajectory; this is why function Aexperiment has been defined as the
constant function returning 1, so that AL becomes the certain event. For day-wise considerations, the
sample space elements stand for themselves only. In this model, Aday is not the certain event, but
P (Aday) = (n+ 1)/(2n), with P (A1) = 1/n and P (A2) = · · · = P (An) = 1/(2n).

Clearly, probability calculus yields

P (H|AL) = P (H) = 1/2,
P (H|Aday) = P ({(H,D1)}|Aday) = P (H ∩ D1)/P (Aday) = 1/(n+ 1).

(10)

For n = 2, P (H|Aday) = 1/3 (the thirders’ perspective).

Model M3 directly implies Elga’s indifference reasoning on awakening days: (9) implies that each element
of Aday receives the same probability in the conditional distribution, i.e.

P (H ∩ D1|Aday) = P (T ∩ D1|Aday) = · · · = P (T ∩ Dn|Aday) = 1/(n+ 1). (11)

Thus, Model M3 can serve as a probabilistic justification for uniform sampling from awakening days
(let’s call it Model M3a). This support for the thirders’ view arises because Model M3 refrains from
conditioning on the known experimental setup. In fact, the model would apply without change to a
modified experiment with a daily coin toss also on D2 to Dn for deciding independently for each day
whether or not Beauty is awoken (yes if Tails, no if Heads).

4 Interpretation of Question 1

For the thirders’ view, the strong law of large numbers is often cited, presumably with repeated experiments
in mind. The quote from Luna (forthcoming) shown in the introduction illustrates the conflict: in a
sequence of N experiments with n = 2, a third of the awakenings are expected to be Heads awakenings,
while half of the coin tosses are expected to come out Heads – trivial, really. Groisman (2008) emphasized
that it makes a difference whether Beauty wants to form a credence about the coin toss showing Heads
(related to the entire experiment), equivalent to the current awakening having been produced by a Heads
coin toss but different from an awakening sampled from the population of awakenings being a Heads
awakening. Exposing Beauty to repeated experiments supports the perception of this distinction, because it
highlights the fact that T coin toss outcomes are overrepresented among awakenings, i.e. in the population
of awakening outcomes, in spite of occurring with the same probability as H coin toss outcomes. Therefore,
this section will work with repeated experiments.

Winkler’s definition of the Sleeping Beauty problem asks “what – to her – is the probability that the coin
came up Heads”. We will explain the three perspectives one can take on this question in this section, first
for the unmodified Sleeping Beauty problem, then illustrated by introducing a commemorative scarf, and
finally using a general coin that might also be unfair.

4.1 Three perspectives

I Heads coin toss
Beauty may want to obtain a probability for a Heads outcome of the coin toss at the beginning
of the experiment she is currently in. Conditioning on AL within any model (certain event, i.e.,
no new information), or conditioning on Aday within Model M2 (also certain event, i.e. no new
information), she will obtain probability 1/2. This perspective is equivalent to perspective II below.

II Heads awakening, "in experiment" perspective
If Beauty’s focus is on a probability for the current awakening being a Heads awakening, i.e. a
probability for the current experiment having produced a Heads awakening, she can again employ
Model M2 and will obtain P (H|Aday) = 1/2 (see also I and Section 3.3).
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III Heads awakening, "outcome population" perspective
If Beauty wants to obtain a probability for the current awakening being a Heads awakening, viewing
it as part of the population of awakenings, she can decide to ignore the experimental setup and to
be guided by the composition of the population of awakenings created by a series of experiments.
She can use Model M3 (or employ an indifference argument among awakenings in Model M1). Thus,
P (H|Aday) = 1/(n+ 1) is obtained (1/3 for n = 2, thirders’ perspective).

I and III highlight exactly the conflict that Luna (forthcoming) referred to. II is a variant of I that makes
it appear much more similar to III: both II and III refer to the current awakening as the entity, on which
Beauty is required to derive a probability for Heads. However, the perspective of looking at the awakening
is different, as was explained by Groisman (2008) with an example of putting red and green balls into
a box or taking them out again: he called the halfer variant “under the setup of coin tossing” and the
thirder variant “under the setup of awakening”, which in this author’s opinion does not fully capture
the subtlety of the point. In the next subsection, a commemorative scarf is introduced as an auxiliary
tool for illustrating the distinction between the “in experiment” perspective (I/II) and the “outcome
population” perspective III. For simplifying communication, we will henceforth denote the probability of
a Heads coin toss in the experiment (perspective I or II) as pH , as opposed to the probability of sampling
a heads awakening from the overall population of awakenings from a series of experiments (III), which we
will denote as pS .

In general, one might be interested in one or the other probability, depending on context. In the Sleeping
Beauty problem, this author considers it rational for Beauty to answer Question 1 with pS (and not
with pH), if she is in a series of experiments for which she cannot (or at least does not) focus on which
experiment she is currently in but considers the series of awakenings only. Nevertheless, even in a series of
experiments, as she knows she must be in a particular experiment, she might still apply the “in experiment”
perspective.

4.2 A commemorative scarf

Consider a small inconsequential experimental condition (inspired both by Groisman’s (2008) green
and red balls and by Mutalik’s (2016b) brass plaque): At the beginning of a series of N experiments,
it is explained to Beauty that outside of her sleeping room, a commemorative patchwork scarf will be
knitted for her to take home afterwards: the scarf will be extended by a square patch (say 10cm x 10cm,
including a thin gold-colored rim) at each awakening, with the patch’s interior colored green at a Heads
awakening or red at a Tails awakening. The scarf will tell Beauty about the sequence of awakenings and
(by deduction) experiments she went through; we will use the term scarf even if it only consists of one or
two patches, e.g. when N = 1 and n = 2. Obviously, the existence of the commemorative scarf does not
change the information available to Beauty during the experiment, because she will not get to see it until
after the experiment. However, it does make clear the distinction between II and III, and can also be
related to I by forming an expectation about the scarf’s length. Figure 3 illustrates the three perspectives
that Beauty can take, when considering the commemorative scarf.

I Heads coin toss
For a single experiment (N = 1) Beauty can think about the expected length of her scarf initially
as pH + n(1 − pH) = (n + 1)/2. For updating this expectation (even though the update should
not modify her expectation), she needs to update her probability pH for a Heads coin toss at the
beginning of the experiment. (Beauty could apply the analogous reasoning for the expected number
of patches contributed to the scarf by the current experiment in a series of N > 1 experiments.)

II Heads awakening, "in experiment" perspective
Beauty can derive a probability about whether the patch that is currently added to her scarf is
green (equivalent to I, targeting probability pH).

III Heads awakening, "outcome population" perspective
Beauty can derive a probability about hitting a green patch when randomly picking a patch out of
the finished scarf (targeting probability pS).
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Figure 4: pS values as functions of pH values for different values of n. Large gray dot: the standard
Sleeping Beauty problem with pH = 1/2, n = 2, pS = 1/3; black dots for pH = 1/2: fair coin implies
pS = 1/(n+ 1); black dots for pS = 1/2: pH = n/(n+ 1) implies equally probable red and green patches
in the commemorative scarf.

4.3 Sleeping beauty with a potentially unfair coin

This section stresses the general relation between the probability pH of the coin to have shown Heads (I
and II) and the probability pS of an element sampled from the population of experimental outcomes to
stem from a Heads experiment (i.e. a green patch, when sampling a random patch from the commemorative
scarf, III). We now allow pH ∈ (0, 1), i.e. the coin may be arbitrarily unfair but not deterministic. The
expected length of a scarf from N experiments is N(pH +n(1−pH)), the expected number of green patches
is NpH , and the large sample proportion of outcomes from Heads experiments (i.e. Heads awakenings or
green patches in the commemorative scarf) is

pS = pH

pH + n(1− pH) . (12)

Equation (12) can be solved for n: the duration of the experiment that transforms the Heads probability
pH into the sampling of Heads probability pS is

n = pH/(1− pH)
pS/(1− pS) , (13)

i.e., the ratio of the two odds. Thus, one would obtain pS = 1/2 for n = pH/(1−pH) ⇐⇒ pH = n/(n+1).

Figure 4 depicts the pS values (“outcome population” perspective) as functions of the pH values (“in
experiment” perspective) for a selection of n values. Of course, pS = pH is obtained for n = 1, while n > 1
implies pS < pH . n = 2 includes the classical Sleeping Beauty problem with pH = 1/2 and pS = 1/3, as
shown by the large gray dot; for a fair coin (pH = 1/2) and general n we obtain pS = 1/(n+ 1). pS = 1/2
can be obtained for pH = n/(n+ 1), as was pointed out above; for example, for n = 2, pH = 2/3 would
lead to equally probable red and green patches in the commemorative scarf. Note that pS is not an
update of pH from gaining new knowledge because of an awakening, but the answer to a different version
of Question 1.
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All models can be generalized to an unfair coin: In Model M1, the two trajectories have the potentially
unequal probabilities pH and 1− pH ; a hierarchical indifference reasoning within trajectories can still be
applied. Because of the unequal probabilities for trajectories, an indifference reasoning between all n+ 1
awakening variants is no longer justified for pH 6= pS . This also holds in Model M3, for which the coin
toss is combined with an independent pick of a day:

P (Ai ∩ T) = P ({(T,Di)}) = P (T ∩ Di) = (1− pH)/n for i = 1, . . . , n,
P (Ai ∩ H) = P ({(H,Di)}) = P (H ∩ Di) = pH/n for i = 1, . . . , n,

P (Aday) = 1− pH + pH/n.

(14)

Thus, Model M3 yields P (H|AL) = pH (trivial) and P (H|Aday) = P (H∩Aday)/P (Aday) = pH/(pH +n(1−
pH)) = pS . In a Bayesian framework, pS can be considered as an update of pH in Model M3; within the
Sleeping Beauty problem, however, pS must be considered to be a change in perspective rather than an
update from receiving new information, because Model M3 neglects the experimental setup.

In Model M2, an awakening is picked randomly, conditional on the coin toss result, which yields

P (Ai ∩ T) = P ({(T,Di)}) = P (T ∩ Di) = (1− pH)/n for i = 1, . . . , n,
P (A1 ∩ H) = P ({(H,D1)}) = P (H ∩ D1) = pH ,

P (Ai ∩ H) = P ({(H,Di)}) = P (H ∩ Di) = 0 for i = 2, . . . , n.
(15)

Consequently, P (H|AL) = P (H|Aday) = pH remains correct for an unfair coin.

Thus, in perfect analogy to the fair coin, Model M3 answers Question 1 under the “outcome population”
perspective (III), while Model M2 covers Question 1 under the “in experiment” perspective (I/II).

5 Treatment of Question 2 and relation to classical arguments

5.1 Treatment of Question 2

For Question 2, conditioning on A1 = D1 removes all doubts on what Beauty knows, and AL ∩ D1 =
Aday ∩ D1 = D1. It remains a valid question, whether Beauty wants to target pH or pS ; however, the
“in experiment” or “outcome population” perspective coincide for this special case, because this can be
considered to be the n = 1 case (see Figure 4 in Section 4.3) for which pH = pS . These deliberations hold
if it is known to Beauty that this question will be asked on D1 of every experiment (as stated in various
instances of the Sleeping Beauty problem).

• Model M1, by restricting both trajectories to D1, yields the unambiguous answer 1/2.
• Model M3 yields the same answer, as pH = pS = 1/2.
• Model M2 is not applicable to Question 2 in its usual form, in which the calendar day is disclosed

to Beauty on D1 of every experiment (see the discussion below).

When simply applying probability calculus within Model M2,

P (H|D1) = P (H ∩ D1)/P (D1) = n/(2n)
(n+ 1)/(2n) = n

n+ 1 . (16)

This probability (2/3 for n = 2) has been brought forward by some halfers, e.g. Lewis (2001). This
result would be appropriate under the assumption that D1 has been the outcome of a random pick of an
awakening day (as is assumed in Model M2) on which to disclose the calendar day to Beauty; such a
random pick would have probability 1 in case of Heads and 1/n only in case of Tails. Bayes’ Theorem
then plausibly yields the posterior probability n/(n+ 1) for Heads as shown in Equation (16). However,
if the calendar day is disclosed to Beauty on D1 of every experiment, and if this is known to Beauty, she
must abandon her model M2 of a random pick of awakening day for answering Question 2. This does of
course not invalidate the model for Question 1.

5.2 Relation to Elga (2000) and Lewis (2001)

In the notation of this paper, Elga’s symmetry argument, as reported by Winkler (2017), is as follows:
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• P (H|A1) = P (T|A1), as we just agreed (answer to Question 2).
• By multiplying with P (A1), one gets

P (H ∩ A1) = P (H|A1)P (A1) = P (T|A1)P (A1) = P (T ∩ A1).

• Furthermore, it is doubtlessly plausible that

P (T ∩ A1) = · · · = P (T ∩ An).

• The preceding two bullets can be combined into the indifference equation (11) of Model 3a, i.e. into
the thirders’ perspective.

• Elga concluded that each of the n+ 1 possible awakening combinations must receive probability
1/(n+ 1).

Elga’s entire reasoning implicitly conditions on Aday. The second bullet is compatible with Model M3
only, for which P (A1) = 2 · P (Ai), i > 1. As was mentioned before, Model M3 answers Question 1 from
the “outcome population” perspective (which is the point made by Groisman 2008), i.e. provides the
answer for Question 1 in terms of the “outcome population” probability pS = 1/3.

Recently, the thirders’ perspective seems to have become the dominant view, according to Winkler (2017).
However, given the experimental setup, the double halfers position does have considerable clout, and we
present a slightly shifted Lewis (2001) reasoning below, which is based on Model M2:

• P (H) = P (T) = 1/2, P (Aday) = 1, so that (of course) P (H|Aday) = 1/2 (answer to Question 1).
• P (A1|H) = 1, which implies P (A1 ∩ H) = 1/2.
•

∑n
i=1 P (Ai|T) = 1, which implies

∑n
i=1 P (Ai ∩ T) = 1/2; assuming conditional uniformity for

awakening days, P (A1|T) = 1/n, which implies P (A1 ∩ T) = 1/(2n) (1/4 for n = 2).
• Consequently, P (A1) = (n+ 1)/(2n) (3/4 for n = 2).
• Hence, P (H|A1) = n/(n+ 1) (2/3 for n = 2).

As was pointed out in the previous subsection, the last bullet is plausible only, if the awakening day is
a random pick from the possible awakening days. If this assumption is plausible to Beauty, a rational
Beauty should answer Question 2 with n/(n+ 1). However, as was pointed out before, Question 2 of the
Sleeping Beauty problem is usually assumed to be asked on every D1 instance, and this assumption is
also included by Lewis. If Beauty is aware of that fact, she should answer Question 2 with the probability
1/2, e.g. by applying Model M1.

6 Wrap-up

This section summarizes the relations of different solution patterns for the Sleeping Beauty problem to
the models, assumptions and perspectives discussed in this paper.

Answer 1/2 (or pH) to both Question 1 and Question 2
This arises under all models if Beauty assumes her knowledge to be AL only. If she assumes her
knowledge to be Aday, the answer to Question 1 arises by applying Model M2 (or the corresponding
hierarchical indifference reasoning within M1, which does not require that she uses arguments
outside of probability theory, see Section 3.2). For Question 2, Beauty has to realize that the
assumptions for Model M2 (random pick of awakening day, given coin toss) cannot be upheld; she
can apply Model M1 in a purely probabilistic fashion with trajectory shortened to D1 (Monday)
instead. Beauty remains within the "in experiment" perspective (I or II). This double-halfer pair of
solutions appears the most plausible to this author.

Answer 1/2 (or pH) to Question 1 and n/(n+ 1) (2/3 for n = 2, pS in general) to Question 2
This pair arises under Model M2 (or the corresponding hierarchical indifference reasoning within
M1, which now requires the use of non-probabilistic indifference reasoning among Tails awakenings)
if Beauty applies the model to both questions. This may be considered rational if she believes
the day of Question 2 to be a random pick of awakening day, which is incompatible with most
accounts of the Sleeping Beauty problem which involve Question 2. Beauty remains within the "in
experiment" perspective (I or II).
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Answer 1/(n+ 1) (1/3 for n = 2 or pS in general) to Question 1 and 1/2 to Question 2
This pair arises from Model M3 (or the corresponding non-hierarchical indifference reasoning among
awakenings within Model M1). It refers to the "outcome population" perspective (III). Within
Model M3, the probability appears to arise from a Bayesian update. However, for the Sleeping
Beauty problem, since the known experimental setup is ignored in the model assumptions, the
approach is not an update of the (in experiment) probability under the Bayes theorem, but a
switch in perspective (as explained in Section 4). Note that the answer to Question 2 arises in both
perspectives, because n = 1 implies pH = pS .

Note that the thirders’ answer could also be justified by Model M3 in a modified Sleeping Beauty problem
with a daily coin toss (see the end of Section 3.4), for which a rational Beauty could use conventional
Bayesian conditioning for obtaining the probability P (Hi|Aday) = 1/(n+ 1), with Hi denoting Heads on
Di. For n = 2, and with the coin toss occurring after the D1 awakening (Figure 2), the daily coin toss
may be what some thirders have in mind.

7 Final remarks

The Sleeping Beauty problem has been extensively discussed, especially in the philosophical literature.
The author considers the objective probability side of the problem resolved by the present paper, building
on simple probabilistic models in combination with the idea brought forward by Groisman (2008). The
philosophical discussions will certainly continue, however: even the Monty Hall problem whose probability
assessment has been resolved for a long time, continues to serve as an example setting for testing
philosophical ideas.

The previous section summarized the understanding gained in this paper regarding the objective probability
aspects of the Sleeping Beauty problem. The key steps in sorting out assumptions, models, and perspectives
were

• to view the experiment as a series of events, as depicted in Figures 1 and 2; this understanding is
supported by considering a general n instead of the default n = 2.

• to acknowledge Groisman’s (2008) distinction between considering a Heads coin toss on the ex-
periment level (I) equivalent to being in a Heads awakening in terms of its production (II, “in
experiment” perspective) on the one hand, or being in a Heads awakening viewed from the population
of awakenings (III, “outcome population” perspective), on the other hand. This distinction is best
understood for repeated experiments and was illustrated by introducing the commemorative scarf.

• to explicitly incorporate sampling of awakening days conditional on the outcome of the initial coin
toss (Model M2, definitely applicable under Figure 1, but only with a stretch applicable under
Figure 2) or of laboratory days independently of the coin toss, ignoring the experimental setup
(Model M3, equivalent to sampling from the outcome population).

• to explicitly distinguish between pH for the “in experiment” perspective and pS for the “outcome
population” perspective, which is supported by also considering an unfair coin (Section 4.3, and
especially Figure 4).

While probability calculus involves application of Bayes’ theorem, the only instance of an actual update of
probability because of new information within the Sleeping Beauty problem occurs for P (H|A1) = n/(n+1)
(2/3 for n = 2), if one assumes a random pick of awakening day; however, as was discussed before, this
assumption of Model M2 is not compatible with most accounts of Question 2. P (H|Aday) = 1/(n+ 1)
according to Model M3 formally also arises from applying Bayes’ theorem. Within the Sleeping Beauty
problem with a single coin toss at the beginning of the experiment, however, it is not an update because
of new information of P (H) = pH within the “in experiment” perspective, because Model M3 neglects the
information on the experimental setup; rather, the formal application of Bayes’ theorem in Model M3
must be seen as a change in perspective from pH to pS = pH/(pH + n(1− pH)) (see Section 4.3).

Various factors make it difficult to obtain unambiguous answers to the Sleeping Beauty problem: the
natural Model M1 does not provide a probability framework for all aspects of interest, and neither
Model M2 nor Model M3 perfectly captures all aspects of the Sleeping Beauty problem. Things are
further muddled by a lack of separation between awakening days and calendar days in many accounts. The
disagreement between the “in experiment” and the “outcome population” perspectives for n > 1 laboratory
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days (Question 1), combined with the agreement between the two perspectives for n = 1 laboratory days
(and thus for Question 2) also adds difficulty to the problem.

Many publications quoted the strong law of large numbers in support of the thirders’ answer to Question 1,
presumably with the repeated experiments for the “outcome population” perspective in mind. The
considerations of this paper should make it obvious that the strong law of large numbers is not partial for
a particular answer. If one correctly applies it under a set of assumptions, it yields the answer that is
compatible with those assumptions. If the strong law of large numbers is identified with a large sample
from Model M1, subsequently calculating the proportion of Heads experiments among awakenings, the
thirders’ answer is indeed obtained, because this answer refers to the “outcome population” perspective
(picking a patch from the finished commemorative scarf). From the “in experiment” perspective, however,
hierarchical application of indifference arguments is asked for, which yields 1/2 and coincides with the
model that conditions on the coin toss (see Model M2). The fact that Beauty is currently in an awakening
does not provide new information on the probability pH of the coin toss of the current experiment having
been Heads, even if one takes Aday as the given information (as opposed to AL only). The thirders’ answer
can be justified by shifting attention to the different question of finding the probability pS for picking a
Heads produced element from the outcome population.

The simulation considerations of this paper highlight the well-known and important fact that a simulation’s
results crucially depend on the assumptions that underlie the model. For example, in Model M3, the
author’s initial (mistaken) approach in the simulation was to discard all non-awakening days; this is fine,
as long as one wants to estimate the probability for Heads underlying the current awakening from the
“outcome population” perspective; for assessing the probability for Heads underlying the experiment (i.e.,
perspective I) from the same simulation, however, discarding the non-awakening elements of the sample
space will (of course) create a massive selection bias against H. Simulation assumptions are of course
crucial in practical problems as well, and not only when simulating for a decision theoretic problem. Thus,
this work on the interesting and much-discussed but very theoretical decision-theoretic Sleeping Beauty
problem can also serve as a reminder of the importance of assumptions for applied statisticians who use
simulation in their work.
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