
 Fachbereich II – Mathematik - Physik - Chemie

01/2016

Ulrike Grömping

R Package DoE.base for Factorial Experiments

R-Paket DoE.base für Faktorielle Versuche
(englischsprachig)

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

ISSN (print): 2190-3913

ISSN (online): tbd

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

The reports are freely available via the Internet:
http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm

01/2016, February 2016

© 2016 Ulrike Grömping

R Package DoE.base for Factorial Experiments

R-Paket DoE.base für Faktorielle Versuche (englischsprachig)

Editorial notice / Impressum

Published by / Herausgeber:
Fachbereich II
Beuth Hochschule für Technik Berlin
Luxemburger Str. 10
D-13353 Berlin
Internet: http://public.beuth-hochschule.de/FB_II/
E-Mail: fbiireports@beuth-hochschule.de

Responsibility for the content rests with the author(s) of the reports.
Die inhaltliche Verantwortung liegt bei den Autor/inn/en der Berichte.

ISSN (print): 2190-3913
ISSN (online): tbd

R Package DoE.base for Factorial Experiments

Ulrike Grömping
Beuth University of Applied Sciences Berlin

Abstract

The R package DoE.base can be used for creating full factorial designs and general
factorial experiments based on orthogonal arrays. Besides design creation, some analysis
functionality is also available, particularly (augmented) half-normal effects plots. In addi-
tion to this specific functionality, the package provides convenience features for analysing
experimental designs and the infrastructure for a suite of further packages on designing
and analyzing experiments. This infrastructure is available for use also by further design
of experiments packages.

Keywords: Design of Experiments, DoE, factorial designs, DoE.base.

1. Introduction

Factorial experiments are very common in industrial experimentation. The most widely
spread such experiments use 2-level factors only, but experiments with mixed level factors
are also quite common, for example with the 18 run experimental plan proposed by Taguchi
(NIST/SEMATECH 2012). The design and execution of such experiments is often done dur-
ing everyday work without support from a statistical expert – thus it is important to have
a software available that can be safely used by non-experts. At the same time, statisticians
are often involved in the more important industrial experiments, and there are many facets
to construction of such experiments for which a statistician very much appreciates support
from a powerful software. The R package DoE.base (Grömping 2015b) targets both non-
experts and statisticians. It is part of a larger package suite containing also the packages
FrF2, DoE.wrapper and RcmdrPlugin.DoE, and a fifth supporting package FrF2.catlg128
(Grömping 2014b,c, 2013b,d, 2011b, 2013c). All these packages and all packages on which
DoE.base depends (Chasalow 2012; Venables 2013; Venables and Ripley 2002; Meyer, Zeileis,
and Hornik 2013) are available from the Comprehensive R Archive Network CRAN, which
also holds the software R itself (R Development Core Team 2015). The GUI package Rcmdr-
Plugin.DoE, which will not be described in this article, provides access to some functionality
from the package suite. Grömping (2011b) gives a detailed example-based tutorial for using
it. Package DoE.base provides the infrastructure for the entire package suite, in particular
the class design, functions for importing and exporting experimental designs, and simple
analysis functions for printing, summarizing, plotting, and modeling design data.

Besides providing infrastructure, the main contribution of package DoE.base is to offer features
for creating factorial designs: potentially blocked full factorials (function fac.design) and
catalog-based general factorials (function oa.design) are available. Functions fac.design

and oa.design have taken inspiration from the “white book” (Chambers and Hastie 1984),

4 R Package DoE.base

where these S functions are described that never made it into base R. The most advanced
contributions of the package are the features around orthogonal arrays (function oa.design),
which are subject to ongoing research. These rely heavily on a catalog of orthogonal arrays,
most of which have been taken from Kuhfeld (2010). To the author’s knowledge, the package
is the only place in R where non-regular orthogonal arrays other than Plackett-Burman de-
signs are provided for experimentation. Non-regularity of an array has been discussed to be
beneficial for screening experiments because of their good projectivity properties (see, e.g.,
Box and Tyssedal 1996; Deng and Tang 1999; Tang and Deng 1999). This discussion has so
far focused on 2-level designs, but should analogously apply to more general factorial designs.

There is another R package closely related to the design creation functionality of package
DoE.base: the R package planor (Kobilinsky, Bouvier, and Monod 2015a) can create regular
fractional factorial designs in a general sense (see also Kobilinsky, Monod, and Bailey 2015b).
Package DoE.base is more general than package planor in that it also creates non-regular
designs, can calculate various types of quality criteria, and does not require specification of a
model but can optimize a design with respect to model robustness criteria. It is less general
than planor in that it does not allow to specify a model and estimable effects, i.e., it treats all
effects of the same order on an equal footing. Sections 4 and Section 5.3 will illustrate function
regular.design of package planor as an alternative to functions from packages DoE.base and
FrF2.

The remainder of this article is organized as follows: Section 2 briefly explains and exemplifies
full factorial designs and orthogonal arrays and explains the basic principles of experimental
design. Sections 3 presents the mathematical background and terminology for general or-
thogonal arrays and quality criteria from them. Section 4 discusses creation of full factorial
designs, in particular also with the possibility of blocking them. Section 5 provides insights
into usage and inspection of the orthogonal arrays implemented in package DoE.base. Sec-
tion 6 discusses design creation and analysis tools, using the example of an experimental
design in biotechnology (Vasilev, Schmitz, Grömping, Fischer, and Schillberg 2014). Sec-
tion 7 describes in more detail the half-normal plotting functionality provided by package
DoE.base. Finally, a brief overview of further developments is provided.

2. Basics

2.1. Full factorial designs and designs based on orthogonal arrays

A factorial design is an experimental plan in which k “factors” are systematically varied.
The jth factor has lj “levels”, j = 1...k. If all factors have the same number of levels, i.e.,
l1 = ... = lk, the design is called a “fixed level” or “symmetric” design, otherwise it is called
“mixed level” or “asymmetric”. A “full factorial” design contains (a multiple of) all factor level
combinations, i.e., a multiple of l1 ∗ ... ∗ lk experimental runs. In a full factorial design, all
coefficients for an adequately coded linear model with all main effects, 2-factor interactions,
..., up to k-factor interactions are estimable. The number of estimable effects remains the
same, regardless of the choice of adequate coding. Section 7 will discuss how the coding affects
correlation between coefficient estimates.

Full factorial designs are often not feasible in the real world, if the number of factors or the
numbers of factor levels are not very small. For example, a full factorial experiment with

Ulrike Grömping 5

one 2-level factor and six 3-level factors requires 1458 runs. There are several possibilities
for designs with fewer runs: D-optimal designs require the specification of a model to be
estimated; they can be created with R packages AlgDesign or DoE.wrapper (Wheeler 2014;
Grömping 2013b), but are not the topic of this article. Here, we consider experimental designs
based on orthogonal arrays: these do not require specification of a model but assume that (i)
all effects of the same degree (main effect=degree 1, 2-factor interaction=degree 2, etc.) are
equally important and (ii) that effects of lower degree are more important than those of higher
degree. Orthogonal array designs are often used with the intention of estimating main effects
only; they are particularly common for qualitative factors, although they can also be used for
quantitative factors. For a design based on an orthogonal array, each factor has each level
the same number of times, and each pair of factors has each pair of levels the same number
of times. Genizi Taguchi provided various orthogonal arrays for engineering experimentation;
one of the most-well-known ones is an 18-run array for up to one 2-level factor and up to
seven 3-level factors. This array can for example be found in NIST/SEMATECH (2012), and
is also contained in package DoE.base:

R>L18

A B C D E F G H

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 2 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1

attr(,"origin")

[1] "Taguchi"

attr(,"class")

[1] "oa" "matrix"

This small array can already accommodate the above-mentioned experiment with one 2-level
factor and six 3-level factors. Of course, as it is very much smaller than the 1458 runs for
a full factorial, there is a substantial amount of confounding built into the array. If a small
array like the L18 is to be used, two things are very important: picking the best possible
columns for the design, and understanding the limitations of the resulting design. Package

6 R Package DoE.base

DoE.base can help with both. However, except perhaps for very preliminary investigations,
it will usually be preferable to use less severely confounded designs. Package DoE.base can
also help with optimizing selection of an array and column selection within the array. This
will be demonstrated in Sections 5 and 6.

Orthogonal arrays may be regular or non-regular: in the regular case, it is possible to describe
the array by a few defining relations, similar to the well-known way of doing so for regular
fractional factorial 2-level designs: Starting from a full factorial design in some“generating”or
“base” factors, additional factors are accommodated by assigning them to interactions between
the base factors, which are consequently completely confounded with the new factors’ main
effects. This is a little more complicated for factors with more than two levels, but the
general principle remains the same. One complication arises from base level factors with non-
prime numbers of levels; these can be decomposed into full factorials of factors with prime
numbers of levels, so-called “pseudo factors”. The aforementioned catalog of arrays contains
quite a few regular arrays. Regular orthogonal designs can also be created using function
regular.design of package planor.

Non-regular orthogonal arrays cannot be described by defining relations. Some of the cata-
loged arrays in package DoE.base are non-regular. Section 5.1 provides detail on the catalog
and its usage. Note that the catalog is by no means complete; in particular, it is much more
difficult to completely enumerate all orthogonal arrays than it is to enumerate all regular
orthogonal arrays. Partially complete catalogs of orthogonal arrays are available, e.g., from
the website by Eendebak and Schoen (2010) based on the algorithm described in Schoen,
Eendebak, and Nguyen (2010). In many cases, the web site provides the best arrays only, or
does not provide an array at all (in case of very large numbers of arrays). Where a number
of arrays is shown, the complete set of arrays can in principle be obtained from Eric Schoen;
however, with large numbers of arrays the complete catalogs are so large that it is not easily
feasible to work with them.

2.2. Principles of experimental design

The most important principle of experimentation is replication: when comparing two different
setups, one will usually not rely on a single instance of each setup, but will replicate each
setup a specified number of times. This serves the purpose of making sure that differences
are only interpreted if they are sufficiently larger than can be expected from experimental
variation. Replication is quite different from repeating measurements only: for a proper
replication, all experimental settings have to be redone for each replicate. Sometimes, with
very variable measurement devices, it may make sense not to include replications but to
repeat the measurement process only. This is called “repeated measurements” and has to be
treated quite different from proper replication. Several design generation functions of packages
DoE.base and FrF2 offer the option replications for specifying the number of replications
and repeat.only for indicating whether these are proper replications (default) or repeated
measurements only.

One of the very useful aspects of factorial experiments is implicit replication: when experi-
menting with many factors, one can often expect higher order interactions to be irrelevant.
If this is the case, the degrees of freedom that would have to be dedicated to higher order
interactions can instead be used for estimating error variation (or for accommodating further
experimental factors). Therefore, in factorial experimentation, one will encounter experiments

Ulrike Grömping 7

without replicated runs.

A further important principle is blocking, which can be used to control for known influential
factors that are not of interest in themselves, like batch-to-batch variation. For an orthogonal
array design, one can simply include the block factor as an additional factor and thus has to
find an array of the desired structure. A full factorial design can be blocked without increasing
the number of runs, by allocating the degrees of freedom for the block factor to portions from
interaction effects. This functionality is implemented in function fac.design (see Section 4).

Randomization means that the experimental runs are conducted in random order; it is a
safeguard against bias from unknown influences. If the run order is completely randomized,
all experimental runs can be treated as independent observations, and there is little risk of
systematic bias from experimental order or unknown factors related to experimental order
or time. In real life, there are sometimes so-called randomization restrictions; for example,
experimental runs may be randomized within each block only. Function fac.design allows
randomization within blocks, while designs created with function oa.design have to be re-
randomized with function rerandomize.design for using one of the factors as a block factor.

Whenever proper replication is used, package DoE.base separately randomizes each replication
as though it were a block; however, it does not include a block factor for the replications. Users
who want to include a block factor for replications in the analysis can obtain such a factor
using the function getblock. Users who want to change the randomization, i.e., randomize all
replications together instead of in separate blocks, can use the function rerandomize.design.
Using the “[” method for the class design, users can also reorder a design according to
a randomization scheme that has been worked out outside of R. Of course, whenever the
randomization involves non-trivial restrictions like randomizing in meaningful blocks, the
analysis has to be conducted accordingly.

3. General orthogonal arrays

This section provides the mathematical background for general orthogonal arrays, as far as
it can be helpful for using the orthogonal arrays available in R package DoE.base.

3.1. Terminology for orthogonal arrays

An array in the sense of this article is a rectangular table of numbers with n rows and
k columns, like the L18 shown on p. 5. The rows correspond to experimental runs, the
columns to experimental factors. In the cataloged arrays in DoE.base, the levels of an l-
level factor are denoted by the numbers 1...l. An array becomes an experimental design by
allocating numbers to factor levels. The array is orthogonal, i.e., an OA, if for each pair of
columns each combination of levels occurs equally often. If this is the case, main effects of all
factors can be estimated separately from each other (provided, no higher order effects are in
the model).

An OA is said to be of strength s, if each combination of levels occurs equally often for
each subset of s columns. Thus, each OA is at least of strength 2. Strength of an OA is
directly related to resolution of an array: resolution, denoted by roman numerals, is always
one higher than the strength, i.e., strength 2 arrays are of resolution III and so forth. For
an array of resolution III, main effects are not aliased with main effects, but can be aliased
with 2-factor interactions (three factors involved); for an array of resolution IV, main effects

8 R Package DoE.base

are not aliased with 2-factor interactions, but can be aliased with 3-factor interactions, while
2-factor interactions can be aliased with other 2-factor interactions (four factors involved).
This notion is well-known for regular fractional factorial 2-level designs, and is completely
analogous for non-regular designs and for designs with factors at more than 2 levels or in
mixed level situations. Note that a full factorial in k factors has strength k.

3.2. Generalized word length pattern and refinements

Xu and Wu (2001) introduced the generalized word length pattern (GWLP) for general or-
thogonal arrays. It is an extension of the well-known word length pattern (WLP) for regular
fractional factorial 2-level designs: in the latter, one starts out with a set of base factors and
allocates additional factors to interactions among these (the generating contrasts). Coding
all main effects model matrix columns with “-1” (one level) and “+1” (the other level), this
way of design generation causes products of model matrix columns to be either half “-1” and
half “+1”, or constant columns. Factors, whose product of model matrix columns yields a
constant column, form a “word” together. The word length pattern is a frequency table of
word lengths. For regular fractional factorial 2-level designs, each group of c factors either
does or does not form a word, i.e., contributes one or zero to the count for words of length c.
This results in a word length pattern with only integer entries.

In general, partial aliasing is possible. Even if there are only 2-level factors, e.g., in a Plackett-
Burman design (Plackett and Burman 1946), a set of factors can contribute a fraction of a
word to the GWLP count for the respective word length. Consequently, GWLP entries need
not be integers. For example, the GWLP of the L18 is

R>GWLP(L18)

0 1 2 3 4 5 6 7 8

1.0 0.0 0.0 28.0 52.5 52.5 70.0 33.0 6.0

The GWLP is denoted as A0, A1, A2, A3, ..., with Ac the number of generalized words of
length c. The entry “1” for A0 is generic and does not indicate confounding. The GWLP
for orthogonal arrays and designs based on them is usually presented starting with A3, since
orthogonality implies absence of words of lengths one or two. The GWLP coincides with the
WLP for regular fractional factorial 2-level designs; for details, consult Xu and Wu (2001)
themselves or Grömping (2011a) for a more accessible account. The concepts of strength and
resolution directly relate to the (G)WLP: the shortest word length with a non-zero count
is the resolution of the design, the longest word length with a zero count is the strength.
Hence, the L18 has resolution III and strength 2. Note that it is not adequate to use the term
“generalized resolution” here, because that term is already in use for a different concept that
is also implemented in package DoE.base (see below).

The number of generalized words of length c is the sum over contributions from all sets of
c factors. For a set of R factors with l1...lR levels in a resolution R design (equivalent to
s + 1 factors in a strength s design), Grömping and Xu (2014) have shown an upper bound
for the contribution to the count AR to be min((l1 − 1), ..., (lR − 1)), i.e., the upper bound
for the number of generalized words in a set of R factors depends on the pattern of levels in
the set and is given by the main effect degrees of freedom for the factor with the fewest levels

Ulrike Grömping 9

(the analogous result for symmetric designs was shown earlier by Xu, Cheng, and Wu 2004).
Furthermore, Grömping and Xu (2014) provided a statistical rationale for the contributions
of sets of R factors to AR in resolution R designs, i.e., the building blocks for the number of
shortest words: each R-set contribution can be seen as the sum of R2-values from linear models
explaining orthogonal contrast columns for any one of the R factors by a full model in the
other R−1 factors (provided the factor to be explained has orthogonally coded model matrix
columns; otherwise, R2 values have to be replaced by squared canonical correlations). Thus,
the number of shortest words measures the extent of worst-case confounding in a plausible
way. It is therefore particularly instructive to study R factor sets in resolution R designs.
Based on these, Figure 1 illustrates the meaning of words in an informal sense, using mosaic
plots as proposed in Grömping (2014a). The most severe imbalance is shown in plot (a)
of the figure: the factor level combination of any pair of factors completely determines the
level of the third factor. This is a resolution III regular array, for which each main effect is
confounded by the two-factor interaction of the other two factors. This is reflected in the
number of words, which coincides with the aforementioned upper bound. The plot shows a
triple from the array L36.2.16.3.4 from package DoE.base; an identical plot can be produced
from columns 2, 4 and 5 of the well-known Taguchi L18 shown on p. 5.

The factor set of Figure 1 (a) attains its upper bound for the number of generalized words.
For the other factor sets shown in Figure 1, the upper bound is one because of one degree of
freedom only for the 2-level factor in the set. However, with a 2-level and two 3-level factors
in an orthogonal array, this upper bound cannot be attained. The upper bound can only be
attained if the smallest number of levels is a divisor of all the other numbers of levels, which
is for example the case in symmetric designs. In summary, the figure illustrates that more
words are related to less balance.

The GWLP can be used for selecting a best design by comparing designs with respect to
their so-called aberration: a design is better than another one, if it has higher resolution; in
case of equal resolution, a design has smaller aberration, if its number of shortest words is
smaller, in case of ties, successively considering longer words until a difference is encountered.
If this principle is applied to a complete set of possible designs, the best design is said to have
“generalized minimum aberration” (GMA).

Over and above the GWLP, package DoE.base allows to look at individual R-factor set con-
founding through mosaic plots (Grömping 2014a), like the ones shown in Figure 1, and pro-
vides an overview of the confounding in R-factor projections through projection frequency
tables (functions P3.3 or P4.4), average R2 frequency tables (ARFT) and squared canonical
correlation frequency tables (SCFT); the latter are based on the results by Grömping and
Xu (2014) and detailed in Grömping (2013a). Sometimes, several designs that have GMA
can be distinguished further by the more detailed criteria. Grömping and Xu (2014) also
introduced a generalization of the generalized resolution GR as proposed by Deng and Tang
(1999): GR refines the resolution R by indicating the distance from complete confounding.

10 R Package DoE.base

●
●

●
●

●

●

●
●

●

●
●
●

●

●
●
●

●
●

B

A C

3 3
21

2

32
1

1

1 2 3
3

2
1

(a) Complete aliasing: 2 words of length 3
36 runs, 3,3,3 levels.

●

●

●

●

●

●

C

B E

3 2
1

2

2
1

1

1 2 3

2
1

(b) 2/3 words of length 3
36 runs, 2,3,3 levels.

C

B E

3

2
1

2

2
1

1

1 2 3

2
1

(c) 1/6 words of length 3
36 runs, 2,3,3 levels.

C

B D

3

2
1

2

2
1

1

1 2 3

2
1

(d) Perfect balance: 0 words of length 3
36 runs, 2,3,3 levels.

Figure 1: Mosaic plots of different degrees of confounding for triples of factors in 36 run
designs.

Ulrike Grömping 11

We have R ≤ GR < R + 1; the larger GR, the less severe the worst case confounding in the
design; if GR = R, there is at least one instance of complete confounding in an R-factor set.
Furthermore, GRind is a stricter version of GR which already becomes equal to R if there is a
triple of factors for which there is a coding such that at least one degree of freedom of at least
one factor is completely confounded. Besides the overall GR and GRind, individual factor
versions GRtot,i and GRind,i capture the corresponding worst cases for R factor sets involving
the ith factor. The GWLP can be obtained with function GWLP (or with the older function
lengths, which is usually slower but performs better for designs with many runs); GR can
be obtained with the (old) function GR or – together with GRind, the individual GRtot,i and
GRind,i, ARFT and SCFT – with function GRind.

4. Full factorial designs with function fac.design

Function fac.design creates full factorial designs. There is also a simple way in base R for
creating all combinations of factor levels: function expand.grid with subsequent randomiza-
tion of the run order will do the job. The benefits of using function fac.design lie in the
inclusion into the general framework, and in the possibility of automatically blocking designs.
The blocking method makes use of so-called pseudo-factors: whenever the number of levels
of a factor is not prime, it can of course be factored into primes, e.g., 6 into 2 and 3; thus, a
six-level factor can be obtained by the six different factor level combinations of a full factorial
in a two- and a three-level factor; such component factors are called pseudo factors (e.g., F1

and F2 below).

Function fac.design uses a method by Collings (1984, 1989) for creating the block factor;
in case of automatic blocking, the blocking pattern for several 2- or 3-level factors is taken
from optimal blocked catalogs (internal objects block.catlg and block.catlg3); if a factor
contains several pseudo factors with the same prime, its use in block generators ensures that
different pseudo factors are used for different block generators involving the factor (where
possible). However, the procedure does not ensure overall optimality of the blocking strategy.
Neither does function regular.design from package planor; however, that function may be
worth a try if the result from function fac.design is not satisfactory, and it can be used for
situations outside fac.design’s scope for automatic blocking.

The following two code examples exemplify situations for which automated blocking works
without or with confounding of two-factor interactions of experimental factors (with a warning
in the latter case).

For a full factorial design with six factors with 2, 3, 3, 2, 2 and 6 levels (hence 432 runs),
running in six blocks is possible without confounding blocks with two-factor interactions in
experimental factors:

R>full.factorial.blocked6 <- fac.design(nlevels = c(2, 3, 3, 2, 2, 6),

+ blocks = 6)

R>summary(full.factorial.blocked6)

Call:

fac.design(nlevels = c(2, 3, 3, 2, 2, 6), blocks = 6)

12 R Package DoE.base

Experimental design of type full factorial.blocked

432 runs

blocked design with 6 blocks of size 72

Confounding of 2 -level pseudo-factors with blocks

(each row gives one independent confounded effect):

A B C D E F F

1 0 0 1 1 1 0

Confounding of 3 -level pseudo-factors with blocks

(each row gives one independent confounded effect):

A B C D E F F

0 1 1 0 0 0 1

Factor settings (scale ends):

A B C D E F

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3

4 4

5 5

6 6

The summary indicates that the design confounds the block factor with the interactions
ADEF1 and BCF2, where F1 and F2 denote two different pseudo factors that make up the
six-level factor F . This means, in particular, that there is no confounding of the block factor
with two-factor interactions of experimental factors.

Blocking this full factorial in four or nine blocks is also possible, but confounds the block factor
with a two-factor interaction among experimental factors, which is signaled by a warning
message and is also visible from the summary:

R>full.factorial.blocked4 <- fac.design(nlevels = c(2, 3, 3, 2, 2, 6),

+ blocks = 4)

R>summary(full.factorial.blocked4)

Call:

fac.design(nlevels = c(2, 3, 3, 2, 2, 6), blocks = 4)

Experimental design of type full factorial.blocked

432 runs

blocked design with 4 blocks of size 108

Confounding of 2 -level pseudo-factors with blocks

(each row gives one independent confounded effect):

Ulrike Grömping 13

A B C D E F F

[1,] 1 0 0 0 1 1 0

[2,] 0 0 0 1 1 1 0

[3,] 1 0 0 1 0 0 0

Factor settings (scale ends):

A B C D E F

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3

4 4

5 5

6 6

The function allows automatic blocking for the most frequent situations, where most prime
factors are two and three, and only single prime (pseudo) factors are larger than three; there
is also a limit on the number of 2- and 3-level factors (see the package manual).

We now consider an example, for which block generators have to be manually specified: for
blocking a full factorial in one 2-level factor, three 5-level factors and one 10-level factor into
25 blocks, the prime 5 is needed twice for creating the block factor; thus, two block generators
for the prime 5 need to be specified. These can be given as a matrix with two rows (one for
each block generator) and a column for each prime factor (in the order of factors, and within
each factor, in increasing order, i.e., 2, 5, 5, 5, 2, 5 for the present design). The following code
yields the desired blocked full factorial for the above requirement.

R>BG <- rbind(c(0, 1, 1, 2, 0, 0), c(0, 0, 1, 1, 0, 1))

R>full.factorial.blocked25 <- fac.design(nlevels = c(2, 5, 5, 5, 10),

+ blocks = 25, block.gen = BG)

R>summary(full.factorial.blocked25)

Call:

fac.design(nlevels = c(2, 5, 5, 5, 10), blocks = 25, block.gen = BG)

Experimental design of type full factorial.blocked

2500 runs

blocked design with 25 blocks of size 100

Confounding of 5 -level pseudo-factors with blocks

(each row gives one independent confounded effect):

A B C D E1 E2

[1,] 0 1 1 2 0 0

[2,] 0 0 1 1 0 1

[3,] 0 1 2 3 0 1

[4,] 0 1 3 4 0 2

[5,] 0 1 4 0 0 3

[6,] 0 1 0 1 0 4

14 R Package DoE.base

Factor settings (scale ends):

A B C D E

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6

7 7

8 8

9 9

10 10

The above design is reasonable and does not confound two-factor interactions of experimental
factors with the block factor. Function fac.design would throw an error, if the chosen block
generator confounded a block effect with a main effect contrast of experimental factors or did
not provide an appropriate number of blocks. Apart from these gross issues, responsibility
for an appropriate choice of block.gen is completely with the user.

If the user is not able to come up with a satisfactory block structure, function regular.design

from package planor can be used to create a design with the required properties (see code
below). If that function takes a very long time for a reasonably-sized problem, there is in
many cases no solution for the requested situation; it can, however, also mean that an existing
solution is difficult to find for regular designs with factors that have non-prime numbers of
levels.

R>require("planor")

R>planor.blocked25 <- regular.design(

+ factors = c("Block", "A", "B", "C", "D", "E"),

+ nlevels = c(25, 2, 5, 5, 5, 10), block = ~Block, nunits = 2500,

+ model = ~ (A + B + C + D + E) ^ 2 + Block,

+ estimate = ~ (A + B + C + D + E) ^ 2)

The search is closed: max.sol = 1 solution(s) found

The search is closed: max.sol = 1 solution(s) found

For the design planor.blocked25, the estimate option guarantees that blocks are not con-
founded with 2-factor interactions. The block generator used by function regular.design

is different from the one chosen in function fac.design above, but of the same quality with
respect to the GMA criterion. This can be verified by applying function GWLP or function
lengths to both designs (as mentioned before, lengths is faster for designs with many runs):

R>round(lengths(full.factorial.blocked25, with.blocks = TRUE), 2)

2 3 4 5

0 0 16 8

Ulrike Grömping 15

R>round(lengths(getDesign(planor.blocked25)), 2)

2 3 4 5

0 0 16 8

Neither function fac.design nor function regular.design from package planor guarantees
optimality of the confounding structure, and neither is generally superior to the other.

5. Orthogonal arrays with package DoE.base

If more than two levels are required for some factors, but a full factorial cannot be afforded,
a regular or non-regular orthogonal array can be used. For the creation of regular designs,
also with mixed levels, function regular.design from package planor is very useful. As seen
in the code of the previous section, the function can specify a model and separately a (sub)
model to be estimable; in this way, it was, e.g., possible to treat the block factor different
from the other factors. Note, however, that it is not possible to generate non-regular designs,
and that no effort is made at a better design in terms of overall model robustness, whenever
the requested estimability requirements are satisfied. Furthermore, creation of some designs
takes a very long time, even for relatively small designs (e.g., 32 runs).

Package DoE.base pursues a different route: It contains the previously-mentioned catalog
of orthogonal arrays; most of its arrays have been taken from Kuhfeld (2010). Similarly to
most experimental design software, the default approach of function oa.design is to use the
smallest array possible and to take columns with the requested numbers of levels from left to
right until the design has been filled. If the user does not influence the chosen columns with the
columns option, a warning is issued for making the user aware of potential improvements. The
following sub sections discuss the catalog and ways to select arrays from it, the optimization
of column selection from a selected array, and ways to inspect experimental plans regarding
their suitability for the experiment at hand.

5.1. The data frame oacat and the function show.oas

The arrays available in package DoE.base are documented in the data frame oacat. Since
version 0.27, this data frame contains additional columns with information regarding the array
properties. oacat contains the following columns:

� name gives a structured array name, which indicates the number of runs and the fre-
quency of factors with different numbers of levels; for example, the name L18.2.1.3.7

indicates 18 runs with one 2-level factor and seven 3-level factors. nruns directly gives
the number of runs. n2 to n72 give the number of factors with 2 to 72 levels. Thus, for
L18.2.1.3.7, nruns=18, n2=1, n3=7, and all other nx entries have the value 0.

� lineage contains a string variable which indicates how the array was constructed from
so-called parent arrays. An empty string indicates that the array itself is a parent array.
Parent arrays are stored in the package and are objects of class oa, which are matri-
ces that usually contain an origin attribute and sometimes also a comment attribute.
Arrays with a lineage entry are constructed from the parent arrays.

16 R Package DoE.base

� Logical columns indicate a full factorial array (ff), an array with only squared canonical
correlations 0 and 1 (regular), and an array with only average R2 values 0 and 1
(regular.strict; these can only be fixed level arrays). Note that the squared canonical
correlations and average R2 values currently refer to R factor projections, where R is
the resolution of the entire array; an array that exhibits regular behavior for all such
projections might still be non-regular when considering projections onto larger numbers
of factors. Thus, the regularity indicator columns might change with future package
versions.

� Column SCones contains the number of squared canonical correlations that are one.

� Columns GR and GRind contain the GR and GRind values, respectively.

� Columns maxAR and maxSC contain the maximum average R2 or squared canonical cor-
relation, respectively.

� Column dfe provides the number of error degrees of freedom, if the all columns of the
array are used.

� Columns A3 to A8 provide the numbers of generalized words of lengths 3 to 8. (There
are no words of shorter lengths, of course.)

It is possible to use the data frame oacat directly for inspecting which arrays of a certain
nature are available, for example for finding 32 run arrays which are regular but not strictly
regular:

R>oacat$name[oacat$nruns==32 & oacat$regular & !oacat$regular.strict]

[1] "L32.2.28.4.1" "L32.2.25.4.2" "L32.2.24.8.1"

[4] "L32.2.22.4.3" "L32.2.21.4.1.8.1" "L32.2.19.4.4"

[7] "L32.2.18.4.2.8.1" "L32.2.16.4.5" "L32.2.16.16.1"

[10] "L32.2.15.4.3.8.1" "L32.2.13.4.6" "L32.2.12.4.4.8.1"

[13] "L32.2.10.4.7" "L32.2.9.4.5.8.1" "L32.2.7.4.8"

[16] "L32.2.6.4.6.8.1" "L32.2.4.4.9" "L32.2.3.4.7.8.1"

[19] "L32.4.8.8.1"

The author prefers non-regular arrays for many situations, at least for the creation of screening
designs. Looking at regular arrays in package DoE.base may nevertheless be of interest, if
function regular.design of package planor runs for a long time without indicating failure for
a run size that is in the scope of package DoE.base: if there is a regular array of the desired size
in DoE.base, this array can be inspected and perhaps used after column optimization (see
next section). Also, in principle, function regular.design can be expected to eventually
succeed, unless estimability requirements make the existing array unsuitable. However, note
again that the value TRUE in column regular or even regular.strict of oacat refers to
projections onto R factors with R the array’s resolution and does not guarantee regularity
of the entire array. For example, the array L24.2.12.12.1 has only regular three-factor
projections (full factorial for triples of 2-level factors, confounded for triples with the 12-level
factor), but non-regular four-factor projections (for quadruples of 2-level factors).

Ulrike Grömping 17

The function show.oas allows inspection of the available arrays in a more convenient way.
Suppose, for example, that a design for three 2-level factors, two 3-level factors and one 6-
level factor is to be created, and between 20 and 54 runs are affordable (a full factorial would
have 432). The following statement allows to inspect the candidate arrays, displaying also
the quality metrics:

R>show.oas(nruns = c(20, 54), nlevels = c(2, 3, 3, 2, 2, 6),

+ showmetrics = TRUE)

5 arrays found

name nruns lineage GR GRind regular SCones A3 A4 A5

78 L36.2.13.3.2.6.1 36 3.00 3.00 FALSE 6 45.3 158.4 426

81 L36.2.10.3.8.6.1 36 3.18 3.18 FALSE 0 130.3 737.2 3063

83 L36.2.9.3.4.6.2 36 3.00 3.00 FALSE 17 82.3 338.2 1025

87 L36.2.3.3.9.6.1 36 3.18 3.00 FALSE 12 73.8 300.2 912

88 L36.2.3.3.2.6.3 36 3.00 3.00 FALSE 37 35.6 73.1 120

A6 A7 A8

78 1010 1753.2 2306.8

81 11096 31380.8 68828.1

83 2828 5507.5 7780.0

87 2404 4354.2 5793.4

88 125 63.5 13.9

Only arrays in 36 runs have been found; these are quite different in the available patterns
of numbers of levels, and therefore the quality metrics (especially the Ak) are not directly
comparable. Nevertheless, the values for GR and GRind suggest that one might try the array
L36.2.10.3.8.6.1, which is the only one without any completely confounded degree of freedom.

5.2. Optimization methods for function oa.design

Function oa.design allows to select an array, and to specify columns from that array either
manually or by an optimization approach. As was mentioned earlier, if no array is specified,
the function picks the first (and thus smallest) array in the catalog that is able to accommodate
the requested factors. If no column selection approach is specified, the function simply takes
the first available columns (from left to right).

The code below compares three designs:

� an unoptimized default design (i.e., the left-most suitable columns of the first array
encountered, which is the L36.2.13.3.2.6.1),

� an optimized default design with optimization option columns="min34" (i.e., an opti-
mized choice of columns from the array L36.2.13.3.2.6.1, optimization being with respect
to the number of generalized words of length 3, and subsequently length 4)),

� and an optimized design obtained by selecting columns from the array L36.2.10.3.8.6.1
selected in Section 5.1 because of its GRind value.

18 R Package DoE.base

R>oa.default <- oa.design(nlevels = c(2, 3, 3, 2, 2, 6))

R>GWLP(oa.default, digits = 2)

0 1 2 3 4 5 6

1.00 0.00 0.00 5.78 2.11 2.44 0.67

R>oa.optimized <- oa.design(nlevels = c(2, 3, 3, 2, 2, 6), columns = "min34")

R>GWLP(oa.optimized, digits = 2)

0 1 2 3 4 5 6

1.00 0.00 0.00 4.11 3.61 2.78 0.50

R>oa.manualoptimized <- oa.design(L36.2.10.3.8.6.1,

+ nlevels = c(2, 3, 3, 2, 2, 6), columns = "min34")

R>GWLP(oa.manualoptimized, digits = 2)

0 1 2 3 4 5 6

1.00 0.00 0.00 2.44 6.44 1.78 0.33

Clearly, optimization improves the design from the default array, and the optimized prese-
lected array is even better.

There are various methods for optimizing column allocation (see the manual for function
oa.design); columns = "min34" is the most important one among these. Depending on the
number of columns on offer and the number of columns to be selected, optimization can take
a very long time; in the above example,

(
10
3

)(
8
2

)
= 3360 column choices have to be checked

out, which is doable in reasonably short time. For larger designs, the resource implications of
the numbers of available columns of the required lengths may also be considered in selecting
an array to use.

5.3. Blocking general orthogonal arrays

Suppose a design with the above factors is to be run, and the 6-level factor is a blocking
factor. In that case, the design should be randomized such that runs are randomized within
blocks. Function oa.design does not directly allow to block randomization. However, the
function rerandomize.design allows a post-hoc randomization within a single design factor
declared as the block factor:

R>blockedoa1 <- rerandomize.design(oa.manualoptimized, seed = 24652,

+ block = "F")

R>blockedoa1

run.no run.no.std.rp F A B C D E

1 1 22.5.4 5 2 1 1 1 2

2 2 5.5.2 5 1 2 3 2 2

3 3 15.5.3 5 1 3 3 1 1

4 4 1.5.1 5 1 1 2 1 1

Ulrike Grömping 19

5 5 35.5.6 5 2 2 1 2 1

6 6 33.5.5 5 2 3 2 2 2

run.no run.no.std.rp F A B C D E

7 7 32.3.5 3 2 2 1 2 2

8 8 14.3.3 3 1 2 2 1 1

9 9 34.3.6 3 2 1 3 2 1

10 10 4.3.2 3 1 1 2 2 2

11 11 3.3.1 3 1 3 1 1 1

12 12 24.3.4 3 2 3 3 1 2

run.no run.no.std.rp F A B C D E

13 13 18.4.3 4 1 3 3 2 2

14 14 26.4.5 4 2 2 2 2 1

15 15 30.4.6 4 2 3 1 1 1

16 16 11.4.2 4 1 2 1 1 2

17 17 7.4.1 4 1 1 3 2 1

18 18 19.4.4 4 2 1 2 1 2

run.no run.no.std.rp F A B C D E

19 19 10.2.2 2 1 1 3 1 2

20 20 21.2.4 2 2 3 1 1 2

21 21 29.2.6 2 2 2 3 1 1

22 22 17.2.3 2 1 2 2 2 2

23 23 9.2.1 2 1 3 2 2 1

24 24 25.2.5 2 2 1 1 2 1

run.no run.no.std.rp F A B C D E

25 25 20.6.4 6 2 2 3 1 2

26 26 16.6.3 6 1 1 1 2 2

27 27 8.6.1 6 1 2 1 2 1

28 28 12.6.2 6 1 3 2 1 2

29 29 28.6.6 6 2 1 2 1 1

30 30 27.6.5 6 2 3 3 2 1

run.no run.no.std.rp F A B C D E

31 31 31.1.5 1 2 1 3 2 2

32 32 36.1.6 1 2 3 2 2 1

33 33 13.1.3 1 1 1 1 1 1

34 34 2.1.1 1 1 2 3 1 1

35 35 23.1.4 1 2 2 2 1 2

36 36 6.1.2 1 1 3 1 2 2

class=design, type= oa.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not part of the

data frame

Function GWLP per default ignores confounding with the block factor, but can be requested to
include it:

R>GWLP(blockedoa1, digits = 2)

0 1 2 3 4 5

1.00 0.00 0.00 0.28 0.33 0.39

20 R Package DoE.base

R>GWLP(blockedoa1, with.block = TRUE, digits = 2)

0 1 2 3 4 5

1.00 0.00 0.00 2.44 6.44 1.78

For designs that can also be created with function FrF2 (package FrF2) and/or regular.design
(package planor), using one of the latter two may be a better choice, since they allow a more
direct control over design quality via minimum aberration or estimable effects: The code
below (not run) shows creation and inspection of a 16 run design with eight 2-level factors
in eight blocks of size 2 with all three methods; in all three cases, the design is resolution IV
in terms of the experimental factors, which is systematically requested in both FrF2 (by
the minimum aberration approach of the function) and regular.design (by the model and
estimate options). For function oa.design, the design quality is not as finely tunable, apart
from the overall optimization that may precede usage of an array for which not all columns
are used. For the designs below, however, the quality is the same for all three designs: The
GWLPs, starting with A3, are (28,14,56,0,28,1) including the block factor and (0,14,0,0,0,1)
for the experimental factors alone (for class design objects, this is the default, obtained from
calling GWLP without the with.block = TRUE option).

R>planFrF2 <- FrF2(16, 8, blocks = 8, alias.block.2fis = TRUE)

R>planDoEbase <- oa.design(L16.2.8.8.1,

+ nlevels = c(2, 2, 2, 2, 2, 2, 2, 2, 8),

+ factor.names = c(Letters[1:8], "Block"))

R>planDoEbase <- rerandomize.design(planDoEbase, seed = 31525,

+ block = "Block")

R>planplanor <- regular.design(factors = c(Letters[1:8], "Block"),

+ nlevels = c(rep(2, 8), 8),

+ model = ~ (A + B + C + D + E + F + G + H) ^ 2 + Block,

+ estimate = ~ A + B + C + D + E + F + G + H,

+ nunits = 16, randomize = ~ Block / UNITS)

R>GWLP(planFrF2, with.block = TRUE)

R>GWLP(planFrF2)

R>GWLP(planDoEbase, with.block = TRUE)

R>GWLP(planDoEbase)

R>GWLP(planplanor@design)

R>GWLP(planplanor@design[, 1:8])

As an aside, it is worth mentioning that any experimental plan should be carefully checked
before using it for experimentation, since experimentation usually involves a lot of effort:
adverse consequences from mistakes in design creation may be severe, but can often be pre-
vented without much trouble, if attended to at the design creation stage. A simple check of
the GWLP can serve as a first indication whether the design behaves as expected. For ex-
ample, an earlier version of package package planor (version 0.2.0, when the package website
still warned that the package was under test and should be used with caution) had a bug that
could under certain circumstances create avoidably bad designs. The code below (results not
shown) gives the above blocking example with a less wise design specification that yielded a
non-orthogonal design with one word of length 2 (GWLP starting with A2: 1,24,25,32,31,8,6):

Ulrike Grömping 21

R>planoldplanor.bug <- regular.design(factors = c(Letters[1:8], "Block"),

+ nlevels = c(rep(2, 8), 8),

+ model = ~ A + B + C + D + E + F + G + H + Block,

+ estimate = ~ A + B + C+ D + E + F + G + H,

+ nunits = 16, randomize = ~ Block / UNITS)

R>GWLP(planoldplanor.bug@design)

R>plot(planor2design(planoldplanor.bug), select = "all2")

The plot command in the code above revealed that factor C was aliased with the Block factor
for the latter design, which explains the word of length 2. Such a design should of course not
be used. Let me emphasize that this example is not meant to imply that package planor is
less trustworthy than other design creation packages but rather that a design should always
be checked before using it for experimentation!

5.4. Inspection methods for factorial designs

This is a good place to exemplify further possibilities for design inspection. The function
names for obtaining quality criteria were already mentioned in Section 3.2.

The function GRind calculates the metrics introduced by Grömping and Xu (2014) with the
additional detail proposed in Grömping (2013a). For example, the code below shows that the
optimized design based on the manually selected array has a clearly better overall behavior
regarding factor-specific worst case confounding (GRtot, i and GRind,i, see Section 3.2) than
the optimized design based on the automatically selected first array:

R>GRind1 <- GRind(oa.optimized)

R>GRind2 <- GRind(oa.manualoptimized)

R>print(cbind(rep(c("oa.opimized", "oa.optimized2"), each = 2),

+ rbind(GRind1$GR.i, GRind2$GR.i)), quote = FALSE)

A B C D E F

GRtot.i oa.opimized 3.667 3 3 3.423 3.423 3.368

GRind.i oa.opimized 3.667 3 3 3.423 3.423 3

GRtot.i oa.optimized2 3.184 3.5 3.423 3.423 3.667 3.635

GRind.i oa.optimized2 3.184 3.5 3.423 3.423 3.667 3.423

The plot method for class design can be used to visualize the worst case confounding for
a design. The optimized design based on the array that was automatically picked severely
confounds the interaction of the two 3-level factors with the 6-level factor: of the 54 possible
level combinations in this triple of factors, the design contains 18 only (instead of the possible
36). The optimized design after manually picking a better starting array shows a much less
severe worst case confounding. A mosaic plot of that projection is created by the first line
of the following code and is shown in Figure 2 (a). It shows that the interaction of the two
3-level factors restricts the 6-level factor to a third of its possibilities only, which is the most
severe form of aliasing possible for a triple of factors with this level combination.

R>plot(oa.optimized, select = "worst", selprop = 0.05)

R>plot(oa.manualoptimized, select = c(2, 3, 6))

R>plot(oa.manualoptimized, select = "worst", selprop = 0.05)

22 R Package DoE.base

In comparison, a mosaic plot of the same projection for the optimized manually selected
design shows a much better picture: now, the design has 36 distinct level combinations, the
maximum possible (see Figure 2 (b)). The worst case confounding for that design is shown
in the Figure 2 (c). It is distinctly less severe than that of Figure 2 (a); however, apart from
the one worst case shown in Figure 2 (a), the optimized automatically-selected design is also
quite reasonable.

6. An example from plant biotechnology

Vasilev et al. (2014) investigated cultivation factors for geraniol production by plant cells.
There were four quantitative 2-level factors, two 3-level factors (one quantitative and one
qualitative) and one qualitative 4-level factor. The data, including response values, have been
published with the paper and are also included in package DoE.base as VSGFS.

6.1. Creating and inspecting the design

For this experiment, a full factorial design would have had 576 runs. It would certainly have
been necessary to conduct it in blocks, say in eight blocks of size 72 each. Such a design
could have been created by function fac.design or by function regular.design of package
planor, as shown in Section 4.

A full factorial appeared neither feasible nor appropriate for the screening situation of the ex-
periment. Instead, the design was conducted using a 72 run orthogonal array, which was gen-
erated with function oa.design, using automatic optimization (option columns = "min34")
of the manually preselected array L72.2.43.3.8.4.1.6.1. The optimization takes quite a
long time and results in the selection of columns 4,22,37,41 for the 2-level factors, 46 and 48
for the 3-level factors, and 52 for the 4-level factor. The design is available as VSGFS, and the
code for reproducing it can be found in the manual.

When constructing the experimental plan for VSGFS, the array was preselected by intuition
and trial and error, using the version of function show.oas available at the time, which only
allowed to show all 72 run designs that can accommodate the requested factors. Using the
recently added showmetrics option together with the GRgt3="ind" option (i.e., requesting
that GRind > 3 which means absence of any instance of complete confounding), one can pick
arrays that are particularly promising for screening purposes. The following command shows
the available arrays without any complete confounding for the example situation:

R>show.oas(nlevels = c(2, 2, 2, 3, 2, 3, 4), GRgt3 = "ind",

+ showmetrics = TRUE)

Ulrike Grömping 23

●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●
●
●

C

B F

3

6
5

43
21

2

65
43

2
1

1

1 2 3

65
4

3
21

(a) Autoselected array, worst
case.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

C

B F

3

6
5

4
3

21

2

6
5

43
2

1

1

1 2 3

65
4

3
2

1

(b) Manually selected array,
same case.

●

●

●

●

●

●

●

●

●
●

●
●

C

A F

2

6
54

3
2

1

1

1 2 3

6
5

4
3

2
1

(c) Manually selected array,
worst case.

Figure 2: Mosaic plots of triples of factors.

4 arrays found

name nruns lineage GR GRind

366 L72.2.53.3.2.4.1 72 3.18 3.18

380 L72.2.44.3.12.4.1 72 3.18 3.18

382 L72.2.43.3.8.4.1.6.1 72 3.18 3.18

431 L72.2.13.3.25.4.1 72 3~24;24~1;:(24~1!2~13;3~1;4~1;) 3.18 3.13

regular SCones A3 A4 A5 A6 A7 A8

366 FALSE 0 493 6952 73484 664600 5061660 3.29e+07

380 FALSE 0 823 13567 169200 1807970 16229326 1.24e+08

382 FALSE 0 687 10478 121425 1201691 9944686 6.99e+07

431 FALSE 0 653 9622 107523 1022817 8069007 5.36e+07

The array used in actual experimentation is the third array in this list; thus, the intuitive
approach was successful in this case. It can be expected that all four arrays listed above
are reasonably suited for screening the experimental factors. As the designs are far from
saturated, optimal column allocation can substantially improve the worst case confounding:
for the eventual design, the output below shows GR = GRind = 3.6, implying that the largest
squared correlation and the largest average R2 are 1/9 only; these are attained in the triples
1,2,7 and 3,5,7. For illustrating the worst case degree of confounding, Figure 3 shows the
triple 3,5,7 in quite reasonable balance.

R>GRind(VSGFS)

$GRs

GR GRind

3.667 3.667

$GR.i

Light ShakFreq InocSize FilledVol CM Sugar CDs

GRtot.i 3.667 3.667 3.667 3.864 3.667 3.864 3.808

GRind.i 3.667 3.667 3.667 3.808 3.667 3.808 3.667

24 R Package DoE.base

CM

In
oc

S
iz

e

C
D

s

IS
+

C
D

4
C

D
3

C
D

2
C

D
1

IS
−

CM− CM+

C
D

4
C

D
3

C
D

2
C

D
1

Figure 3: Mosaic plot for the worst case triple in the VSFGS example.

$ARFT

aveR2 frequency

0.000 69

0.004 4

0.009 1

0.012 15

0.019 6

0.037 6

0.111 4

$SCFT

SC frequency

0.000 129

0.012 15

0.019 3

0.037 12

0.111 6

The team was happy with the design and used it for collecting the data. Software-wise,
data collection happened in Excel, exporting the randomized design with the export.design

function and re-importing it after data entry using the exported rda file together with a csv
file with response values added to the data rows using function add.response.

6.2. Analyzing experimental data

The data frame VSFGS contains the experiment with response data. Package DoE.base offers
a few functions for analysis purposes:

Ulrike Grömping 25

� the plot method for class design, in case of data with responses, creates simple main
effects plots, by invoking the plot method from package graphics

� the lm method for class design runs a linear model with a modifiable default degree.
For orthogonal arrays created with function oa.design, the default degree is one, i.e.,
a model with main effects only. Linear models can of course also be run by the lm

function from the core package stats, and analysis of variance functionality can also be
used (see below).

� the halfnormal method for classes lm or design creates a half-normal effects plot (see
Section 7)

Of course, other R functionality can also be used, for example interaction plots or functionality
for mixed model analysis. The functionality for handling repeated measurement data or
replicated data has been described for package FrF2 in Grömping (2014c, Sections 5.3 and
5.9 of) and is analogous here.

Main effects plots can be obtained by the simple command plot(VSGFS), which creates these
plots for all three response variables. Figure 4 shows the plots with default labeling, arranged
with three plots on one page and reduced margin sizes. Of course, one would usually adapt
the annotation for final reports or publications. The plot shows that the sugar sucrose is very
beneficial for the biomass, not very good for the content, but nevertheless, because of the
strong effect on biomass, beneficial for the yield. The content apparently can be increased by
choosing the sugar mannitol, level one of factor CD and the +-level of Light. Apart from the
+-level of Light, the other settings for high content are not helpful for overall yield.

An assessment of significance can be obtained from a linear model analysis. This can be
obtained separately for each response, for example for the content. Here, the analysis confirms
the findings from the main effects plot:

R>summary(lm(VSGFS, response = "Content"))

Number of observations used: 72

Formula:

Content ~ Light + ShakFreq + InocSize + FilledVol + CM + Sugar +

CDs

Call:

lm.default(formula = fo, data = model.frame(fo, data = formula))

Residuals:

Min 1Q Median 3Q Max

-2.5472 -1.1746 -0.1052 0.7008 4.6994

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.67611 0.55106 33.891 < 2e-16 ***

Light1 0.63264 0.19483 3.247 0.00191 **

ShakFreq1 -0.15792 0.19483 -0.811 0.42083

26 R Package DoE.base

2
3

4
5

Factors

m
ea

n
of

 B
io

m
as

s

Lght−

Lght+

SF−
SF+

IS−

IS+

FV−

FV0

FV+

CM−
CM+

Suc

Gluc

Mannit

CD1

CD2
CD3
CD4

Light ShakFreq InocSize FilledVol CM Sugar CDs

17
.5

18
.0

18
.5

19
.0

19
.5

20
.0

Factors

m
ea

n
of

 C
on

te
nt

Lght−

Lght+

SF−

SF+
IS−
IS+

FV−

FV0

FV+

CM−

CM+

Suc

Gluc

Mannit

CD1

CD2CD3

CD4

Light ShakFreq InocSize FilledVol CM Sugar CDs

30
40

50
60

70
80

90
10

0

m
ea

n
of

 Y
ie

ld

Lght−

Lght+

SF−
SF+

IS−

IS+

FV−

FV0

FV+

CM−
CM+

Suc

Gluc

Mannit

CD1

CD2
CD3
CD4

Light ShakFreq InocSize FilledVol CM Sugar CDs

Figure 4: Main effects plots for all three responses.

Ulrike Grömping 27

InocSize1 0.05903 0.19483 0.303 0.76296

FilledVolFV0 -0.36958 0.47723 -0.774 0.44172

FilledVolFV+ -0.14958 0.47723 -0.313 0.75503

CM1 -0.22069 0.19483 -1.133 0.26182

SugarGluc 0.54917 0.47723 1.151 0.25441

SugarMannit 2.51167 0.47723 5.263 2e-06 ***

CDsCD2 -1.63222 0.55106 -2.962 0.00438 **

CDsCD3 -1.57111 0.55106 -2.851 0.00597 **

CDsCD4 -1.10722 0.55106 -2.009 0.04901 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.653 on 60 degrees of freedom

Multiple R-squared: 0.4787, Adjusted R-squared: 0.3831

F-statistic: 5.008 on 11 and 60 DF, p-value: 1.75e-05

The model explains less than 50% of the response variability, which is far from perfect. The
strong heredity principle – interactions are only active if both their component factors are
active – suggests to look at a model with the three active main effect factors and their
interactions, which leaves a somewhat confusing picture (not shown).

For the data at hand, there are enough degrees of freedom to run an Anova analysis with
the full degree 2 model. Of course, while main effects are orthogonal to each other, 2-factor
interactions can be slightly confounded with main effects and severely confounded with other
2-factor interactions. However, at least, the theory tells us that the estimable effects can
be estimated without bias (unless effects of order higher than two bias them). As Anova
analyses sums of squares, the analysis is invariant with respect to factor coding. In order
to obtain an order-invariant assessment of significance, the function Anova from package car
(Fox and Weisberg 2011) can be used; contrary to function anova from package stats, Anova
avoids order-dependence by using type II sums of squares, which condition on all other effects
except for ones that contain the effect under investigation. The results point to the main
effects that were also identified before, and a liberal look at p values additionally indicates
some marginal 2-factor interactions (Sugar with each of InocSize, FilledVol, CDs, Light,
and ShakFreq:CM, which is completely unrelated to the active main effects).

R>require("car")

R>Anova(lm(VSGFS, response = "Content", degree = 2))

Anova Table (Type II tests)

Response: Content

Sum Sq Df F value Pr(>F)

Light 16.345 1 8.2606 0.0165515 *

ShakFreq 0.483 1 0.2441 0.6319195

InocSize 1.604 1 0.8105 0.3891387

FilledVol 0.889 2 0.2247 0.8026463

CM 0.805 1 0.4069 0.5378565

28 R Package DoE.base

Sugar 67.692 2 17.1048 0.0005921 ***

CDs 29.468 3 4.9642 0.0230814 *

Light:ShakFreq 1.672 1 0.8450 0.3795988

Light:InocSize 0.320 1 0.1616 0.6961803

Light:FilledVol 3.296 2 0.8330 0.4628103

Light:CM 2.874 1 1.4524 0.2558948

Light:Sugar 11.387 2 2.8774 0.1030201

Light:CDs 6.073 3 1.0231 0.4231004

ShakFreq:InocSize 1.162 1 0.5871 0.4612301

ShakFreq:FilledVol 0.420 2 0.1061 0.9003686

ShakFreq:CM 6.303 1 3.1856 0.1046054

ShakFreq:Sugar 3.074 2 0.7767 0.4857813

ShakFreq:CDs 11.717 3 1.9738 0.1819413

InocSize:FilledVol 1.626 2 0.4109 0.6737704

InocSize:CM 0.752 1 0.3802 0.5512885

InocSize:Sugar 20.475 2 5.1739 0.0286697 *

InocSize:CDs 7.710 3 1.2989 0.3280819

FilledVol:CM 2.976 2 0.7521 0.4962887

FilledVol:Sugar 24.172 4 3.0539 0.0692876 .

FilledVol:CDs 6.333 6 0.5334 0.7719232

CM:Sugar 3.387 2 0.8559 0.4538120

CM:CDs 10.566 3 1.7799 0.2144014

Sugar:CDs 33.075 6 2.7858 0.0734918 .

Residuals 19.787 10

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Even though this design does not require analysis with half-normal effects plots, the next
section will illustrate application of half-normal effects plots for this example.

7. Half-normal effects plots

In (almost) saturated designs, conventional analysis of variance methods are not very suc-
cessful, because there are too few degrees of freedom for error. If one assumes a screening
design, for which most effects are inactive, the inactive effects actually represent experimental
error; however, it is not known a-priori, which are the active effects. Daniel (1959) proposed
to use half-normal effects plots for diagnosing which effects are active, and Lenth (1989) pro-
posed a numerical activity check for these, known as “Lenth’s method”. The critical values
proposed by Lenth were later found to be conservative, and it was proposed to use simulated
ones instead. Half-normal effects plots with Lenth’s method and simulated critical values are
implemented in function halfnormal of package DoE.base.

7.1. The principle

The standard use for such plots is with 2-level factors which are conventionally coded in -1/+1
coding (see, e.g., Grömping 2014c). Function halfnormal from package DoE.base covers not
only these standard situations, but also offers half-normal plots for

Ulrike Grömping 29

� 2-level designs with a few error degrees of freedom. For these, it automatically augments
the estimated effects with error effects, distinguishing these into lack-of-fit and pure
error. Significance assessment can be done with Lenth’s method on the augmented set
of estimates, or with other methods proposed in the literature (Larntz and Whitcomb
1998; Edwards and Mee 2008). Note that error effects are not necessarily uniquely
determined.

� 2-level designs with partially confounded effects. For these, it projects out all preceding
effects from the remaining ones (thus, the plotting points depend on the model order
for such situations).

� mixed level designs, for which there is no unique coding and the plotting points are
coding dependent. Mixed level designs can also have error degrees of freedom or partially
confounded effects.

The strategy chosen in function halfnormal seems to be similar to that applied in the JMP
software screening platform (see Chapter 8 of SAS Institute, Inc. 2012), both regarding the
treatment of error points and the single degree of freedom representations for factors with
more than two levels. On the contrary, Design-Expert (Stat-Ease Inc. 2012) does not plot
individual degrees of freedom, but scaled Chi-squared values for effects with more than one
degree of freedom. This avoids the coding dependence, but has the adverse effect that the
number of plotting points is small so that effect sparsity is not easily achieved.

The steps for augmenting the estimated effects with error degrees of freedom are described,
e.g., in Grömping (2015a) and are very similar also to the suggestions by Langsrud (2001) in
a different context. A coarse overview works as follows:

� Make sure the model matrix X has orthogonal columns all of which have the same
Euclidean length; if this is not the case, X has to be pre-treated (see below).

� For N observations, a trivial saturated model matrix is the N -dimensional identity
matrix IN . If a distinction between lack-of-fit and pure error is sought, one can replace
this matrix by a matrix S of dummy variables for distinct runs, and additionally include
appropriately scaled orthogonal contrast matrices for replicated runs. In the following,
for simplicity, IN is used.

� Residualize the matrix IN by projecting out the model matrix X, i.e., calculate the
residual matrix R = IN −X(X>X)−1X>.

� Create the half-normal effects plot for the augmented model matrix (X|R), which has
been created such that it has orthogonal columns of all the same length.

The pre-treatment mentioned in the first bullet is as follows: If X has orthogonal columns
of varying Euclidean lengths, one simply has to normalize all columns to a common length.
The case of non-orthogonal columns is more demanding and will be discussed using the model
matrix X for a full model in an unreplicated full factorial for one 2-level and one 3-level factor,

30 R Package DoE.base

both in dummy coding, as given in Equation 1:

X =

Int A2 B2 B3 A2B2 A2B3

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 0 1 0
1 0 0 1 0 0
1 1 0 1 0 1

(1)

. The columns of this matrix are not orthogonal, which can be easily verified from looking at
X>X. As the intercept estimates the mean for the combination A1B1 and the coefficients for
the main effects columns estimate deviations from that level, there is an obvious dependency.
With the interaction coefficients also measuring deviations of particular cells from additivity,
there is another clear dependence. It is well-known which effects are estimable in factorial
models: those are the overall means and the contrasts. A model matrix formulated to directly
estimate these has orthogonal columns.

Xu and Wu (2001) showed that it is particularly useful to code all main effects columns
using an orthogonal coding normalized to squared length N , where N is the number of
runs: such a coding yields orthogonal columns of the model matrix for all effects up to
degree s for any projection of s factors from a strength s design, if the interaction columns
are created in the usual way as products of the normalized main effects contrast columns; the
interaction columns will then also have squared Euclidean length N and will be orthogonal
to each other and to the main effects columns. Such coding will be called Xu Wu coding in
the sequel. It is available in two versions in package DoE.base: there are contr.XuWu and
contr.XuWuPoly contrasts. The model matrix below is obtained by coding both factors A
and B with contr.XuWu contrasts.

X =

Int A2 B2 B3 A2B2 A2B3

1 −1 −
√

1.5 −
√

0.5
√

1.5
√

0.5

1 1 −
√

1.5 −
√

0.5 −
√

1.5 −
√

0.5

1 −1
√

1.5 −
√

0.5 −
√

1.5
√

0.5

1 1
√

1.5 −
√

0.5
√

1.5 −
√

0.5

1 −1 0
√

2 0 −
√

2

1 1 0
√

2 0
√

2

(2)

If the design has strength s, a model matrix in a Xu Wu coding for main effects with up to
s-factor interactions can also be obtained post-hoc from a model matrix X based on non-
orthogonal coding by sequential orthogonalization and normalization: Project out the first
column (intercept column) from the second, which is just subtraction of the column mean.
Project out the first two columns from the third and so on. In addition, one also has to
normalize all columns to squared length N (or any other common Euclidean length) in order
to satisfy the requirements for a half-normal effects plot.

If the model has truly confounded effects that cannot be orthogonalized by simply applying
Xu Wu coding, the same orthogonalization strategy can be applied, but the consequence is
not only a recoding of in principle the same information, but an order-dependent removal of
earlier confounded effects from later confounded effects.

Ulrike Grömping 31

7.2. Example application

The example design is an orthogonal array, i.e., main effect contrasts can be estimated inde-
pendent of each other. However, depending on the coding, the actual estimated coefficients
may be correlated, as was discussed above. For example, for 2-level factors, if -1/+1 coding is
used, the estimates are uncorrelated, with 0/1 (dummy) coding, however, they are correlated.
It is advisible to explicitly choose an orthogonal factor coding, ideally the Xu Wu variant dis-
cussed above. The code below creates an orthogonal main effects model matrix with squared
Euclidean length N = 72 (output not shown).

R>VSGFS.XuWuPoly <- change.contr(VSGFS, "contr.XuWuPoly")

R>round(crossprod(model.matrix(lm(VSGFS.XuWuPoly))), 2)

Per default, function halfnormal refuses to work in case of correlated main effects (except
in case of the perfect confounding of regular designs). The option ME.partial=TRUE can
be used to change that; if the partial aliasing among main effects estimates is due to non-
orthogonal coding in an orthogonal array, use of ME.partial=TRUE is acceptable in the light
of the previous considerations, although it seems preferable to decide on an orthogonal coding
explicitly.

For the example design, a main effects analysis is quite well-protected against bias from
two-factor interactions. However, two-factor interactions may be quite heavily confounded
with each other. Nevertheless, we will now consider an almost saturated array in order to
demonstrate the most general usage of the function halfnormal.

R>hnAuto <- halfnormal(lm(VSGFS, response = "Content", degree = 2),

+ ME.partial = TRUE, cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = c(0, 2.8), main = "Half-normal effects plot for Content")

R>hnXuWuPoly <- halfnormal(lm(VSGFS.XuWuPoly, response = "Content",

+ degree = 2), cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = c(0, 2.8), main = "Half-normal effects plot for Content")

R>hnXuWuPolyreordered <- halfnormal(

+ lm(Content ~ (CDs + Sugar + CM + FilledVol + InocSize + ShakFreq +

+ Light) ^ 2, VSGFS.XuWuPoly), cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = c(0, 2.8), main = "Half-normal effects plot for Content")

Figure 5 shows half-normal effects plots from a model with all main effects and two-factor
interactions for the response variable “Content”. In order to demonstrate the coding de-
pendence of half-normal effects plots in case of factors with more than two levels, plot (a)
shows automatical coding, plot (b) contr.XuWuPoly coding. Plot (c) shows the analysis for
contr.XuWuPoly coding with the effects in different order. The codings between (a) and (b)
differ in the level ordering for the 3-level factors; for the 4-level factor, the coding differences
are more complicated. While there are clear visual differences between the differently-coded
plots, the message is more or less the same: As already seen in the linear main effects model,
light, sugar and CD are active factors. Furthermore, the Sugar by CD interaction and the
Inoculum Size by Sugar interaction seem to have active components. However, the interac-
tion effects are order dependent. The plot with different interaction orders brings up three
further interactions into the possibly active range and drops the Sugar by CD interaction;

32 R Package DoE.base

thus, clearly, one has to be cautious with statements on these effects from half-normal effects
plots. However, all effects that show up in the half-normal effects plots have also been at least
marginal in the Anova analysis of the previous section.

The calculation results have been stored in the list objects

hnAuto, hnXuWuPoly, and hnXuWuPolyreordered,

respectively. The list element res simply indicates which effects have been projected out from
which other effects; furthermore, the results contain the model matrix after orthogonalization,
and details about the orthogonalization itself. Printed output of orthogonalization steps has
been suppressed here. The reader is encouraged to check the printed output of the simple
command

R>hnAuto <- halfnormal(VSGFS, ME.partial = TRUE, plot = FALSE)

which explains how columns of the main effects model matrix stored in

R>mm <- hnAuto$mm[, 2:11]

are obtained from the original model matrix stored (without intercept column) in

R>desnum(VSGFS)[, 1:10]

8. Further developments

Package DoE.base tries a balancing act of offering tools both for practitioners with a relatively
weak statistical background and for statistical experts. In order to save the former from
avoidable grave mistakes, the package takes a cautious strategy issuing many warnings, where
designs might be improvable or analyses might be inadequate. In various cases, it would be
desirable to avoid unnecessary warnings; for example, there are arrays for which it is known
from theoretical work (Butler 2005) that all choices for certain columns are GMA. For these
arrays, warnings for array optimization should be eliminated, which requires some slightly
tedious work.

The current design catalog covers many situations, but is also limited especially with respect
to availability of non-regular designs. Augmenting the catalog with further useful non-regular
designs is a difficult task and should not be addressed before studying in more detail the
relation between recently developed design quality criteria like GR, GRind, ARFT and SCFT
and a design’s usefulness for experimentation.

So far, the design catalog is used for selecting designs and optimizing column choices from
them. Kuhfeld (2010) makes much more extensive use of the catalog within a SAS software

Ulrike Grömping 33

●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●●

●
●
●
●
●

●
●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Half−normal effects plot for Content

absolute coefficients

H
al

f−
no

rm
al

 s
co

re
s

 FilledVol:Sugar4 lof7
 Sugar:CDs5 CDs3

 Light1
 InocSize:Sugar2

 Sugar2

 Sugar1

Note: Some coefficients are order dependent.

(a) Automatic coding, default order.

●●●
●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●
●
●

●
●
●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Half−normal effects plot for Content

absolute coefficients

H
al

f−
no

rm
al

 s
co

re
s

 CDs.Q
 Sugar:CDs1

 InocSize:Sugar2
 Light.L

 Sugar.L

Note: Some coefficients are order dependent.

(b) contr.XuWuPoly coding, default order.

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●

●●●
●

●
●
●

●
●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Half−normal effects plot for Content

absolute coefficients

H
al

f−
no

rm
al

 s
co

re
s

 CDs.Q
 CM.L:ShakFreq.L
 Sugar:FilledVol4
 Sugar:InocSize2

 Light.L

 Sugar.L

Note: Some coefficients are order dependent.

(c) contr.XuWuPoly coding, reversed order.

Figure 5: Half-normal effects plots for a model with all 2-factor interactions,
labeling from Lenth’s method with α = 0.05.

34 R Package DoE.base

macro suite for creating experimental designs from the arrays in the catalog, specifically
created with marketing applications in mind (Kuhfeld 2010). Such use can certainly also be
combined with the catalog in package DoE.base. The dependent package support.CEs (Aizaki
2012) implements choice experiments in R. However, implementing a functionality as flexible
as the one offered in the (Kuhfeld 2010) SAS macros would require substantial additional
effort.

Package DoE.base also serves as a tool for supporting further theoretical investigations into
aspects like design regularity and new design quality criteria.

Last but not least, the class design and infrastructure for it are also available for use by
other packages. Authors of other S3-based packages are invited to use it; the methods within
package DoE.base for its class design can be adjusted to accommodate further types of design;
please inform the package maintainer, if you would like a new type of design included into
the methods offered.

Acknowledgments

Boyko Amarov and Hongquan Xu contributed code to the package. Creation of generalized
resolution functionality was partly supported by grant GR 3843/1-1 of Deutsche Forschungs-
gemeinschaft.

References

Aizaki H (2012). “Basic Functions for Supporting an Implementation of Choice Experiments
in R.” Journal of Statistical Software, Code Snippets, 50(2), 1–24. ISSN 1548-7660. URL
http://www.jstatsoft.org/v50/c02.

Box G, Tyssedal J (1996). “Projective Properties of Certain Orthogonal Arrays.” Biometrika,
83, 950–955.

Butler N (2005). “Generalised Minimum Aberration Construction Results for Symmetrical
Orthogonal Arrays.” Biometrika, 92, 485–491.

Chambers J, Hastie T (1984). Statistical Models in S. Wadsworth & Brooks/Cole, Pacific
Grove, CA.

Chasalow S (2012). combinat: Combinatorics Utilities. R package version 0.0-8, URL
http://CRAN.R-project.org/package=combinat.

Collings B (1984). “Generating the Intrablock and Interblock Subgroups for Confounding in
General Factorial Experiments.” The Annals of Statistics, 12, 1500–1509.

Collings B (1989). “Quick Confounding.” Technometrics, 31, 107–110.

Daniel C (1959). “Use of Half Normal Plots in Interpreting Two Level Experiments.” Tech-
nometrics, 1, 311–340.

Deng LY, Tang B (1999). “Generalized Resolution and Minimum Aberration Criteria for
Plackett-Burman and Other Nonregular Factorial Designs.” Statistica Sinica, 9, 1072–1082.

http://www.jstatsoft.org/v50/c02
http://CRAN.R-project.org/package=combinat

Ulrike Grömping 35

Edwards D, Mee R (2008). “Empirically Determined p-Values for Lenth t-Statistics.” Journal
of Quality Technology, 40, 368–380.

Eendebak P, Schoen E (2010). “Complete Series of Non-Isomorphic Orthogonal Arrays.” URL
http://pietereendebak.nl/oapage/.

Fox J, Weisberg S (2011). An R Companion to Applied Regression. 2nd edition. Sage, Thou-
sand Oaks CA. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

Grömping U (2011a). “Relative Projection Frequency Tables for Orthogonal Arrays.” Reports
in Mathematics, Physics and Chemistry 1, Beuth University of Applied Sciences Berlin,
Germany.

Grömping U (2011b). “Tutorial for Designing Experiments Using the R Package RcmdrPlu-
gin.DoE.” Reports in Mathematics, Physics and Chemistry 4, Beuth University of Applied
Sciences Berlin, Germany.

Grömping U (2013a). “Frequency Tables for the Coding Invariant Ranking of Orthogonal
Arrays.” Reports in Mathematics, Physics and Chemistry 2, Beuth University of Applied
Sciences Berlin, Germany.

Grömping U (2013b). DoE.wrapper: Wrapper Package for Design of Experiments Function-
ality. R package version 0.8-9, URL http://CRAN.R-project.org/package=DoE.wrapper.

Grömping U (2013c). FrF2.catlg128: Complete Catalogues of Resolution IV 128 Run 2-
Level Fractional Factorials up to 24 Factors. R package version 1.2-1, URL http://CRAN.

R-project.org/package=FrF2.

Grömping U (2013d). RcmdrPlugin.DoE: R Commander Plugin for (Industrial) Design
of Experiments. R package version 0.12-2, URL http://CRAN.R-project.org/package=

RcmdrPlugin.DoE.

Grömping U (2014a). “Mosaic Plots Are Useful for Visualizing Low Order Projections of
Factorial Designs.” The American Statistician, 68(2), 108–116.

Grömping U (2014b). FrF2: Fractional Factorial Designs With 2-Level Factors. R package
version 1.7-1, URL http://CRAN.R-project.org/package=FrF2.

Grömping U (2014c). “R Package FrF2 for Creating and Analyzing Fractional Factorial
2-Level Designs.” Journal of Statistical Software, 56(1), 1–56. ISSN 1548-7660. URL
http://www.jstatsoft.org/v56/i01.

Grömping U (2015a). “Augmented Half Normal Effects Plots in the Presence of a Few Error
Degrees of Freedom.” Quality and Reliability International, 31(7), 1185–1196.

Grömping U (2015b). DoE.base: Full Factorials, Orthogonal Arrays and Base Utilities for
DoE Packages. R package version 0.27-1, URL http://CRAN.R-project.org/package=

DoE.base.

Grömping U, Xu H (2014). “Generalized Resolution for Orthogonal Arrays.” The Annals of
Statistics, 42(3), 918–939.

http://pietereendebak.nl/oapage/
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://CRAN.R-project.org/package=DoE.wrapper
http://CRAN.R-project.org/package=FrF2
http://CRAN.R-project.org/package=FrF2
http://CRAN.R-project.org/package=RcmdrPlugin.DoE
http://CRAN.R-project.org/package=RcmdrPlugin.DoE
http://CRAN.R-project.org/package=FrF2
http://www.jstatsoft.org/v56/i01
http://CRAN.R-project.org/package=DoE.base
http://CRAN.R-project.org/package=DoE.base

36 R Package DoE.base

Kobilinsky A, Bouvier A, Monod H (2015a). planor: Generation of Regular Factorial De-
signs. R package version 0.2-3, URL http://CRAN.R-project.org/package=planor.

Kobilinsky A, Monod H, Bailey R (2015b). “Automatic Generation of Generalised Regular
Factorial Designs.” Preprint Series 7, Issac Newton Institue for Mathematical Sciences,
London, UK.

Kuhfeld W (2010). “Orthogonal Arrays.” URL http://support.sas.com/techsup/

technote/ts723.html.

Langsrud O (2001). “Identifying Significant Effects in Fractional Factorial Multiresponse
Experiments.” Technometrics, 43, 415–424.

Larntz K, Whitcomb P (1998). “Use of Replication in Almost Unreplicated Factorials.”
Manuscript of a presentation given at the 42nd ASQ Fall Technical conference in Corn-
ing, New York, downloaded April 26, 2013., URL http://www.statease.com/pubs/

use-of-rep.pdf.

Lenth R (1989). “Quick and Easy Analysis of Unreplicated Factorials.” Technometrics, 31,
469–473.

Meyer D, Zeileis A, Hornik K (2013). vcd: Visualizing Categorical Data. R package version 1.3-
1, URL http://CRAN.R-project.org/package=vcd.

NIST/SEMATECH (2012). “NIST/SEMATECH e-Handbook of Statistical Methods, Sec-
tion 3.” Accessed 17 Feb 2015, URL http://www.itl.nist.gov/div898/handbook/pri/

section3/pri33a.htm.

Plackett R, Burman J (1946). “The Design of Optimum Multifactorial Experiments.”
Biometrika, 33(4), 305–325. doi:10.1093/biomet/33.4.305.

R Development Core Team (2015). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.

org.

SAS Institute, Inc (2012). JMP Modeling and Multivariate Methods. Cary,
NC. Chapter 8, URL https://www.jmp.com/support/downloads/pdf/jmp1002/

Modeling-and-Multivariate-Methods.pdf.

Schoen E, Eendebak P, Nguyen M (2010). “Complete Enumeration of Pure-Level and Mixed-
Level Orthogonal Arrays.” Journal of Combinatorial Designs, 18(2), 123–140.

Stat-Ease Inc (2012). Design-Expert, Version 8.

Tang B, Deng LY (1999). “Minimum G2-Aberration for Nonregular Fractional Factorial
Designs.” The Annals of Statistics, 27, 1914–1926.

Vasilev N, Schmitz C, Grömping U, Fischer R, Schillberg S (2014). “Assessment of Culti-
vation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell
Suspension Cultures.” PLOS one, 9(8), 1–7. doi:10.1371/journal.pone.0104620.

Venables B (2013). conf.design: Construction of Factorial Designs. R package version 2.0.0,
URL http://CRAN.R-project.org/package=conf.design.

http://CRAN.R-project.org/package=planor
http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
http://www.statease.com/pubs/use-of-rep.pdf
http://www.statease.com/pubs/use-of-rep.pdf
http://CRAN.R-project.org/package=vcd
http://www.itl.nist.gov/div898/handbook/pri/section3/pri33a.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri33a.htm
http://dx.doi.org/10.1093/biomet/33.4.305
http://www.R-project.org
http://www.R-project.org
https://www.jmp.com/support/downloads/pdf/jmp1002/Modeling-and-Multivariate-Methods.pdf
https://www.jmp.com/support/downloads/pdf/jmp1002/Modeling-and-Multivariate-Methods.pdf
http://dx.doi.org/10.1371/journal.pone.0104620
http://CRAN.R-project.org/package=conf.design

Ulrike Grömping 37

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer,
New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Wheeler B (2014). pkgAlgDesign: Algorithmic Experimental Design. R package version 1.1-
7.2, URL http://CRAN.R-project.org/package=AlgDesign.

Xu H, Cheng SW, Wu C (2004). “Algorithmic Construction of Efficient Fractional Factorial
Designs With Large Run Sizes.” Technometrics, 46, 280–292.

Xu H, Wu C (2001). “Generalized Minimum Aberration for Asymmetrical Fractional Factorial
Designs.” The Annals of Statistics, 29(4), 1066–1077. doi:10.1214/aos/1013699993.

Appendix A. Class design and functionality for it

Generally, all design generating functions from packages DoE.base and FrF2 (exceptions high-
lighted in the documentation) create an output design that is of S3 class design and thus
follows a certain structure (cf. Section Appendix A) and allows application of certain inspec-
tion, modification and analysis methods and functions. The first sub section describes the
class design itself, the second sub section functionality applicable to class design objects.

Appendix A.1. Class design

An object of S3 class design is a a data frame with the three attributes desnum, run.order
and design.info.

� Attribute desnum can be used for a numeric version of the data frame, which may be
useful for users who want to do manual matrix calculations. The package functionality
itself makes little use of that attribute.

� Attribute run.order has the main purpose of always being able to switch back and
forth between a standard order and the randomized run order.

� Attribute design.info is a list that contains all the important information on the design
and is heavily used by the methods and functions discussed in the following sub section.
This attribute will be described in some detail in the rest of this sub section.

The design.info attribute has some mandatory elements that have to be present for all
class design objects and many elements that are needed for some types of designs only. The
author’s website contains a large table that details which types of designs need which elements
of the design.info attribute. Table 1 lists the elements and their meaning/context.

Element Data type Role

Mandatory elements
type character string identifies the type of design
nruns number number of runs (replications not counted)
nfactors number number of factors

Continued on next page
Table 1: Elements of the design.info attribute of class design.

http://www.stats.ox.ac.uk/pub/MASS4
http://CRAN.R-project.org/package=AlgDesign
http://dx.doi.org/10.1214/aos/1013699993

38 R Package DoE.base

Table 1 – continued from previous page

Element Data type Role

factor.names named list factor names and factor levels (or scale
ends for quantitative factors)

replications number number of replications or repeated mea-
surements per run

repeat.only logical if TRUE, the number given in the replica-
tions element refers to repeated measure-
ments only

randomize logical if TRUE, run order has been randomized
seed number the seed used for randomization
creator call or list of menu

settings in GUI
the creation history of the object

Optional general elements
response.names vector of character

strings
names of the response columns (column
names from the data frame)

Elements for blocked designs (from functions fac.design, rerandomize.design,
or FrF2)

block.name character string name of block variable
nblocks number number of blocks
block.gen number Yates matrix column number(s) of fac-

tor(s) used for blocking (FrF2) or block
generator matrix (fac.design)

blocksize number run size of each block (without replica-
tions)

bbreps number number of between block replications
(identical to replications)

wbreps number number of within block replications (these
can be proper replications or repeated
measurements only)

Further element for full factorial designs and orthogonal array designs (functions
fac.design or oa.design)

nlevels numeric vector with
nfactors elements

number of levels for each factor

Further elements for general orthogonal array based designs (function oa.design)
generating.oa character string name of the oa used (from catalog of or-

thogonal arrays or user-provided)
selected.columns numeric vector with

nfactors elements
column number from generating.oa for
each factor

origin character string origin specification from generating.oa

(empty, if there is none)
comment character string comment from generating.oa (empty, if

there is none)
residual.df number residual degrees of freedom for main ef-

fects only analysis

Continued on next page
Table 1: Elements of the design.info attribute of class design.

Ulrike Grömping 39

Table 1 – continued from previous page

Element Data type Role

Further element for designs created by function pb

ndummies number number of columns not assigned to exper-
imental factors

Further elements for designs created by function FrF2

aliased list with character el-
ements

information on the alias structure of the
design up to degree 2

FrF2.version character string version number of package FrF2, when de-
sign was created

generators character vector or
design key matrix

design generators in the format “D=ABC”
etc. for FrF2 designs or design key matrix
for designs created with package planor

catlg.name character string name of the catalog used for design cre-
ation

catlg.entry list of length 1 of
class catlg

the catalog entry used for the design

ntreat number identical to nfactors, present for blocked
designs for historical reasons

aliased.with.
blocks

character vector lists 2fis that are aliased with the block
main effect

base.design character string element of design catalog used for creating
a blocked or split plot design from

nfac.WP number number of whole plot factors
nfac.SP number number of split plot factors
nWPs number number of whole plots
plotsize number run size of each plot (without replications)
res.WP number resolution of the whole plot portion of the

design
map numeric vector with

k elements
mapping of base factors so that estima-
bility or randomization restriction require-
ment is fulfilled

orig.fac.order numeric vector with
nfactors elements

order of original factors from function call
for split plot designs

clear logical if TRUE, the design is clear (for estima-
bility requirement)

res3 logical if TRUE, resolution III has been permit-
ted for estimability request

quantitative logical vector with
nfactors elements

TRUE elements indicate quantitative fac-
tors

ncube number number of cube points in a design with
center points

ncenter number number of center points
coding list of formulae coding of quantitative factors (for use with

package rsm)

Continued on next page
Table 1: Elements of the design.info attribute of class design.

40 R Package DoE.base

Table 1 – continued from previous page

Element Data type Role

Further elements for designs created by function Dopt.design

The function also outputs the split plot related elements and element
quantitative described under specific elements for FrF2 above.
plot.name character string name of whole plot factor in split plot re-

quest
digits number number of digits to which quantitative fac-

tors are to be rounded
formula formula model formula for which D-optimality is

to be achieved
constraint logical expression constraint applied to the experimental fac-

tors
optimality Cri-
teria

named numeric vec-
tor

performance of design on several optimal-
ity criteria

Further elements for designs created by function lhs.design

subtype character string type of latin hypercube design
The function also outputs digits and optimalityCriteria elements de-
scribed under specific elements for Dopt.design above.

Table 1: Elements of the design.info attribute of class design.

Apart from the elements listed in the table, there are further elements for class design objects
created by design combination functions. These are not discussed here. For such designs, the
entry types given in the table can also be replaced by lists of several such entries.

Appendix A.2. Functionality for class design objects

Package DoE.base offers inspection methods (print, summary, plot) and analysis methods
(plot, lm, halfnormal) for this class, as well as a subsetting method by "[", which is useful
for reordering experimental runs (switch between standard order and randomized order, re-
randomize).

Besides these major functions, there are various further functions tailored to the need of class
design objects, either as methods for generic functions or just as functions:

� Functions design.info, run.order, and desnum extract or set the respective attributes
of a class design object.

� Functions factor.names and response.names get or set the respective element from
the design.info attribute.

� Function generators extracts generating information for designs of types FrF2 or
planor.

� Function getblock extracts block information for replicated designs (see also Section 2).

Ulrike Grömping 41

� Function rerandomize.design allows to re-randomize a class design object with-
out response data; this also allows explicit blocking of designs created with functions
oa.design and pb (see also Section 5.3).

� Functions for designs that can be both in wide or in long format, i.e., parameter designs
and designs with repeated measurements, can change between long and wide format
or aggregate wide format designs: function rep2wide brings repeated measurement de-
signs into wide format, reptolong does the opposite; function paramtowide brings a
parameter design to wide format (irreversible, they are created in long format); func-
tion aggregate.design (method for the generic aggregate) aggregates designs in wide
format into designs with a single response.

� Functions add.response and col.remove add responses or remove columns; function
response.names can also be used to remove response columns.

� Function qua.design influences, which design columns are quantitative,
function change.contr changes the contrasts of design columns.

� Functions undesign and redesign remove the class design properties from an object
or reinstate them.

� Functions cross.design and param.design combine class design objects into crossed
designs or parameter designs, respectively.

� Function fix.design is a method for the generic fix and has been adapted from package
utils; it allows to edit design objects; however, its use is not recommended.

� Function export.design can export a design in html or csv format, together with an
R workspace for the design. After entering response data in a spreadsheet program,
responses can be added to the design itself using the add.response function.

Affiliation:

Ulrike Grömping
Department II – Mathematics, Physics, Chemistry
Beuth University of Applied Sciences Berlin
D-13353 Berlin
E-mail: groemping@bht-berlin.de
URL: http://prof.beuth-hochschule.de/groemping/

mailto:groemping@bht-berlin.de
http://prof.beuth-hochschule.de/groemping/

