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Frequency tables for the coding invariant ranking of orthogonal arrays 
Ulrike Grömping, Beuth University of Applied Sciences Berlin, Germany 

Abstract 

Ranking of orthogonal arrays, particularly mixed level orthogonal arrays, is a non-trivial task. Existing 

methods include generalized minimum aberration, a modification thereof that was proposed by Wu 

and Zhang for mixed two- and four-level arrays, and minimum projection aberration as proposed by 

Xu, Cheng and Wu for pure three-level arrays and used e.g. by Schoen for mixed level 18-run arrays. 

Based on recent insights by Grömping and Xu into the interpretation of the projection frequencies, this 

report proposes three new types of frequency tables for ranking orthogonal arrays. These are coding 

invariant, which is particularly important for designs with qualitative factors. The proposed tables are 

used in the same way as the existing projection frequency tables, but behave more favorably when 

used for mixed level arrays. Furthermore, they are much more manageable than the above-mentioned 

approach by Wu and Zhang. The report compares the proposed tables to existing ones based on 

various examples and recommends the use of two of the three proposals.  

Key words: Average R2 Frequency Tables, Squared Canonical Correlation Frequency Tables, 

Projection Average R2 Frequency Tables, Generalized Resolution 

1. Introduction 
Experimental design is an important tool for gaining as much information as possible from a limited 

number of experimental runs. One way of designing an experiment is the use of an orthogonal array. 

This report discusses a particular quality aspect of orthogonal arrays and the experimental designs 

based on them. Before going into the specifics, some terminology is provided: Orthogonal arrays 

(OAs) are Nxn matrices of symbols. The n columns correspond to design factors, the N rows to 

experimental runs. A subset of k columns is called a k-factor projection. The symbols that occur in a 

column are called levels; OAs with the same number of levels in all columns are called fixed or pure 

level arrays. If different columns may have different numbers of levels, an OA is called a mixed level 

array. The orthogonality of an OA is constituted by the fact that each column contains each of its 

levels the same number of times (orthogonal to the overall mean), and each pair of columns contains 

each pair of levels the same number of times (pairwise orthogonality). An OA is said to be of 

strength t, if each k-factor projection, k≤t contains each k-tuple of levels the same number of times. In 

the statistical literature, strength t is often denoted as resolution R=t+1. Obviously, OAs have at least 

strength 2, equivalent to resolution III per definition. 
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In the screening phase of the experimental process, the number of experimental runs is usually 

required to be small, while attempting to accommodate relatively many factors, and there will not be 

detailed knowledge on a model for which to optimize a design. Rather, the design should be model-

robust. Given the reasonable and frequently-made assumption that lower order effects are more likely 

than higher order effects to be active, the typical screening design is requested to be able to estimate at 

least the factors’ main effects with as little bias risk as possible from low order interactions. For 

quantitative factors, it is common to consider two levels per factor in the screening phase. For 

qualitative factors, the experimental purpose often dictates the numbers of factor levels for some of the 

factors. This leads to a need for mixed level arrays. Thus, mixed level OAs are often used in the 

screening phase of experiments with qualitative factors. As their construction is by no means 

straightforward for the practitioner, some collections of orthogonal arrays are available in literature, 

web and software, e.g. Taguchi (1987), Hedayat, Sloane and Stufken (1999), Kuhfeld (2009), 

Eendebak and Schoen (2013), Grömping (2013). Recently, with new algorithms for checking 

isomorphism of arrays, some authors have discussed the creation of complete catalogues of non-

isomorphic arrays, both for pure level and mixed level cases (e.g. Stufken and Tang 2007, 

Evangelaras, Koukouvinos and Lappas 2007, Schoen 2009, Schoen, Eendebak and Nguyen 2010, 

Evangelaras, Koukouvinos and Lappas 2011). Of course, such catalogues are useful only if there are 

criteria for choosing designs from them.  

Quality criteria include generalized minimum aberration (GMA) which is based on the generalized 

word length pattern (GWLP) by Xu and Wu (2001) and minimum projection aberration which is based 

on projection frequency tables (Xu, Cheng and Wu 2004). While both these criteria have been applied 

to mixed level designs (see e.g. Schoen 2009, Xu, Phoa and Wong 2009), their validity for that 

situation has been conceptually questioned as early as 1993 by Wu and Zhang (henceforth WZ). This 

report aims at providing tractable quality criteria for orthogonal arrays with qualitative factors that 

fairly treat mixed level designs. The recent work by Grömping and Xu (2013) will be useful in 

obtaining three new and conceptually convincing ways to replace minimum projection aberration by 

other criteria that take care of mixed level arrays in a coding-invariant way and such that WZ’s 

concerns are also addressed. One of the criteria will also prove useful for ranking pure level arrays. 

Section 2 presents the existing quality criteria (GWLP, GMA, minimum projection aberration based 

on projection frequency tables, and WZs proposal), points out in more detail why they leave a gap to 

be bridged, and motivates the new criteria. Section 3 presents the new criteria and their relation to 

some existing concepts and provides several examples for their performance. Section 4 discusses 

ranking of designs and non-equivalence detection as applications of the new metrics. The report closes 

with a discussion.  

The following notation will be used: the letter s stands for the number of factor levels. An orthogonal 

array of resolution R = strength R−1 in N runs with n factors will be denoted as OA(N, s1,…,sn, R−1), 
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with s1, …, sn, possibly but not necessarily distinct, or as OA(N, s1
n1…sk

nk, R−1) with s1, …, sk, 

possibly but not necessarily distinct and n1+…+nk=n (whichever is more suitable for the purpose at 

hand). The unsquared letter R always refers to the resolution of a design, while R2 denotes the 

coefficient of determination. k-factor projections are often denoted by an index set {u1,…,uk}; R factor 

projections are of particular interest for this report.  

2. Basic definitions and results 
This section restates the most important definitions and results from the literature in concise form.  

2.1. Resolution, GWLP and GMA 
In brief, the GWLP with entries A3, A4,… quantifies the amount of confounding among sets of three, 

four, … factors, and the resolution of the design is the number R for which AR > 0, but Ak = 0 for all 

k < R. The GMA criterion ranks designs by minimizing the GWLP entries from left to right, which 

automatically maximizes the resolution. More formally, the generalized word length pattern (GWLP) 

of an OA(N, s1,…,sn, R−1) (Xu and Wu 2001) is most easily defined using the model matrix M = (M0, 

M1, M2, …, Mn) of the full model up to the n factor interaction: M0 is a column of “+1”s, M1 the 

matrix of the n main effects model matrices Xi (N×(si−1)) in orthogonal coding, with all main effects 

columns normalized to mean 0 and squared length N; for 2 ≤ k ≤ n, Mk is the matrix of all ( )n
k  k-factor 

interaction model matrices, i.e. Mk = (X1…k, …, Xn−k+1…n), with Xu1…uk the N×((su1−1)•…•( suk−1)) 

model matrix of the interaction among factors {u1,…,uk} obtained as element-wise products of one 

column from each of the k main effects model matrices. The elements A0,A1,A2,A3,… of the GWLP can 

be calculated as the sums of squared column averages of the respective portions of M, i.e. 

Ak=1TMkMk
T1/N2. That sum can be split into contributions from the separate k-factor projections, i.e.  

{ }
{ }

( )
{ }

{ }
1 1

1 1

T T 2
... ... 1

,..., ,...,
1,..., 1,...,

,...,
k k

k k

k N u u u u N k k
u u u u

n n

A N a u u

⊆ ⊆

= =∑ ∑1 X X 1 ; (1) 

the ak(u1,…,uk) are called projection frequencies and are the basis of minimum projection aberration, 

as presented in the next section. The coding of matrix M1 (orthogonal, squared column length 

normalized to N) will be called “normalized orthogonal coding” in the following. 

2.2. Projection frequencies  
The following two lemmata state the two results from Grömping and Xu (2013) that are most 

important for this paper.  
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Lemma 1 (Grömping and Xu 2013).  

Consider an OA(N, s1…sn, R−1), c ∈ {u1,…,uR} ⊆ {1,…,n}, and C = {u1,…,uR} \ {c}. Denote by Xc 

the N x (sc−1) main effects model matrix in orthogonal coding for the factor c. Then, the projection 

frequency aR(u1,…,uR) is the sum of the R2 values from the sc−1 linear models that explain the columns 

of Xc using a full model of the factors in C. 

Note that orthogonal coding encompasses orthogonality to the intercept column, i.e. the classical 

dummy coding, although yielding main effects model columns that are orthogonal to each other, is not 

considered to be orthogonal coding. Furthermore, note that the individual R2 values depend on the 

particular choice of orthogonal coding, while the sum of the R2 values is independent of that choice.  

 

Lemma 2 (Grömping and Xu 2013).  

Consider an OA(N, s1…sn, R−1), c ∈ {u1,…,uR} ⊆ {1,…,n}, and C = {u1,…,uR} \ {c}. Denote by Xc 

the N x (sc−1) main effects model matrix in arbitrary coding for the factor c, by FC the model matrix of 

a full model of the factors in C, up to the interaction of degree R−1, except for the intercept column. 

Then, the projection frequency aR(u1,…,uR) is the sum of the squared canonical correlations between 

Xc and FC. 

Remark: Under normalized orthogonal coding, all columns of the full model matrix in Lemma 2 can 

be omitted, except for the R−1 factor interaction matrix XC for the factors in C. 

Lemma 2 makes use of canonical correlation analysis (Hotelling 1936). Details on canonical 

correlation analysis can e.g. be found in Härdle and Simar (2003). In brief, canonical correlation 

analysis partitions the linear relation between an Nxp matrix X and an Nxq matrix Y into uncorrelated 

pairs of linear combinations (ui=Xai, vi=Xbi), i=1,…,min(p,q), such that (u1, v1) maximizes the 

correlation among all possible linear combinations, and the subsequent pairs (uj, vj) maximize the 

remaining correlation among all pairs that are uncorrelated to previous pairs. The i-th canonical 

correlation is the correlation of the pair (ui, vi). The canonical correlations are invariant to nonsingular 

affine transformations of the matrices X and Y, which implies that the squared canonical correlations 

provide a coding invariant way of partitioning the projection frequencies. In fact, they partition the 

overall R2 obtained from modeling a factor’s main effects df based on R−1 other factors in the most 

concentrated way that is obtainable from an orthogonal factor coding.  

2.3. Minimum projection aberration 
For resolution R designs, the minimum projection aberration criterion primarily looks at the projection 

frequencies aR(u1,…,uR) of the different R factor projections and ranks design d2 as better than design 

d1, if d2 has fewer projections with high projection frequencies. The tool for assessing this criterion are 

the so-called projection frequency tables (PFTs), as defined below:  
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Definition 1  

(i) For an OA(N, s1,…,sn, R−1), the projection frequency table (PFTk, k ≥ R, Xu, Cheng and Wu 

2004 for k=R) is defined as the frequency table of the ( )n
k  values aR(u1,…,uk),  

{u1,u2,…,uk} ⊆ {1,…,n}. 

(ii) Minimum projection aberration ranks designs according to their PFTR, by minimizing the 

frequency of the largest 1 2( , ,..., )R Ra u u u , in case of ties the frequency of the second largest 

1 2( , ,..., )R Ra u u u , and so forth. In case of identical PFTR, a version of minimum projection 

aberration continues considering the PFTR+1 etc. 

Table 1: The five GMA OA(16, 2342, 2) and design d3 from WZ (obtained from a listing of all 17 non-

isomorphic OA(16, 2342, 2) which was provided by Eric Schoen) 

 1 (d3) 2 (d1) 3 4 (d2) 5 6 
1 1 2 2 3 3 2 1 1 2 4 1 2 2 4 3 2 2 1 4 1 1 2 2 2 1 1 2 2 1 2
2 1 1 2 1 2 2 1 2 3 1 2 1 2 3 1 1 2 2 1 2 1 2 1 4 4 1 1 1 3 4
3 1 1 1 4 4 2 2 1 1 3 2 2 2 3 2 1 1 1 1 1 2 1 1 2 4 2 2 1 3 2
4 2 2 1 1 3 1 1 1 4 3 2 2 1 1 3 1 1 1 4 4 1 2 2 1 2 1 1 1 1 1
5 2 1 2 2 4 1 1 2 4 4 1 1 1 3 3 1 2 2 2 1 2 1 2 4 2 1 2 2 3 3
6 1 2 2 2 2 1 2 1 2 2 1 1 2 1 2 1 1 1 2 2 2 2 1 4 1 2 2 1 4 1
7 2 1 1 3 2 2 2 2 1 4 2 1 2 2 3 2 1 2 1 3 2 2 1 3 2 1 2 2 2 1
8 1 1 1 1 1 1 2 1 3 4 2 2 1 4 1 2 2 1 3 2 2 1 1 1 3 2 1 2 1 3
9 1 1 2 4 3 1 2 2 3 3 1 1 1 1 1 1 2 2 3 4 2 2 2 1 4 1 1 1 2 2

10 2 2 2 4 1 1 1 1 1 1 1 2 1 2 2 1 1 1 3 3 2 1 2 3 1 1 2 2 4 4
11 2 2 2 1 4 1 1 2 1 2 2 1 1 4 2 2 1 2 4 2 1 2 1 3 3 2 2 1 1 4
12 1 2 1 2 1 2 1 2 2 3 2 1 1 2 4 2 1 2 3 1 2 2 2 2 3 1 1 1 4 3
13 2 1 1 2 3 1 2 2 2 1 2 2 2 1 4 2 2 1 1 4 1 1 1 2 2 2 2 1 2 3
14 2 2 1 4 2 2 2 1 4 1 1 2 1 3 4 2 1 2 2 4 1 1 2 3 4 2 1 2 3 1
15 1 2 1 3 4 2 1 1 3 2 1 1 2 4 4 2 2 1 2 3 1 1 1 1 1 2 1 2 2 4
16 2 1 2 3 1 2 2 2 4 2 1 2 2 2 1 1 2 2 4 3 1 1 2 4 3 2 1 2 4 2

Example 1: We consider the five minimum aberration OA(16, 2342, 2) plus a sixth OA(16, 2342, 2) that 

was investigated by Wu and Zhang 1993 together with two of the minimum aberration designs. The 

designs themselves are given in Table 1. The designs marked by d1, d2 and d3 are isomorphic to the 

ones that have been investigated by Wu and Zhang 1993. 

Table 2: GWLP and PFT3 for the designs of Table 1 

 GWLP PFT3 
 Rank A3 A4 A5 Rank 0 0.5 1

1 (d3) 5 5 1 1 6 5 0 5
2 (d1) 1 4 3 0 2 6 0 4

3 1 4 3 0 1 5 2 3
4 (d2) 1 4 3 0 2 6 0 4

5 1 4 3 0 2 6 0 4
6 1 4 3 0 2 6 0 4
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Table 2 shows the GWLP and PFT3 for the designs from Table 1. According to GMA, design 1 (d3) of 

Table 1 is worst, the other five designs are equivalent. PFT3 further distinguishes design 3 from the 

other GMA designs: it has only 3 instead of 4 triples with 1 word of length 3 and is therefore 

considered better. Among the three Wu and Zhang designs, d1 and d2 are equivalent, while d3 is worse. 

2.4. The case for modifications to PFTs for mixed level designs 

Xu, Cheng and Wu (2004) introduced PFT for pure 3-level designs only. For mixed level designs, the 

projection frequencies correspond to R factor projections of different patterns of numbers of factor 

levels. This issue was raised by WZ for mixed 2-level and 4-level designs, and by Grömping (2011) in 

general. A look at Lemma 1 clarifies the reason behind these concerns. The degree of confounding that 

the factor c faces in the projection {u1,…,uR} is reasonably measured by the average of the R2 values 

for the main effects columns of the factor, not by their sum: the average R2 value is 

aR(u1,…,uR)/(sc − 1). The larger the average R2 for a factor in an R factor projection, the higher the 

percentage of the variation in the factor’s main effects model matrix that is explained by the other 

factors, and the higher the confounding risk for this factor’s main effect within the projection. For 

mixed level designs, the same aR(u1,…,uR) value from different projections may imply a different 

degree of confounding; likewise, within the same projection, main effects from factors with different 

numbers of levels have different confounding severities. For example, in a resolution III 3-factor 

projection with two 2-level factors and one 4-level factor, for the 2-level factors, a sum of “1” is also 

an average of “1” and implies that the factors are completely aliased in the projection, whereas a sum 

of “1” for a 4-level factor is an average of 1/3 and means much less severe aliasing for that factor. 

Based on this insight, this report will provide three different ways to tabulate the confounding risk 

from an orthogonal array: average R2 frequency tables (ARFT) tabulate the average R2 values for each 

factor within each projection, i.e. a total of ( )nR R  average R2 values are tabulated. Projection wise 

average R2 frequency tables (PARFT) average the R R2 values tabulated in ARFT within each 

projection (PARFT). Furthermore,  a finer degree of detail is introduced by tabulating a value for each 

individual degree of freedom. While one might think of tabulating individual df R2 values, this is 

generally not a good idea, because these are coding dependent, which is inadequate for qualitative 

factors. A coding invariant individual df approach can be obtained by tabulating the squared canonical 

correlations instead (see Lemma 2), which leads to squared canonical correlation frequency tables 

(SCFTs). All three types of tables and the quality criteria based on them are defined and exemplified 

in Section 3, after investigating WZ’s approach in the following section.   

2.5. Wu and Zhang (1993) 
WZ proposed to treat different types of projections in mixed level designs differently. Their solution 

was very specific to the designs they studied: designs with factors at four and two levels, and at most 
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two factors at four levels. While their approach is interesting, it is messy to generalize it to general 

mixed level designs or even designs with more 4-level factors, and the author does not know of any 

such work (for other generalizations, see below). The key idea is to distinguish between k factor 

projections of only 2-level factors (i.e. zero 4-level factors), k factor projections with one 4-level 

factor, and k factor projections with two 4-level factors. Accordingly, WZ partitioned the overall 

number of words of length k into components Ak = Ak0 + Ak1 + Ak2, where the second index indicates 

the number of 4-level factors in the k factor projection. WZ proceeded by defining “Type 0 minimum 

aberration” as minimum aberration based on Ak0, resolving ties in Ak0 by using Ak1 (and so forth). 

(Their second concept, “Type 1 minimum aberration”, will not be pursued here.)  

Example 1 continued: The six OA(16, 2342, 2) of Table 1 have the WZ patterns shown in Table 3. 

Thus, according to the Type 0 MA criterion, d1 is best (equivalent to 3 and 5), followed by d3 and d2 

(equivalent to 6) in that order. This ranking invoked a skeptical remark of Wu and Zhang regarding the 

universal usefulness of their criterion: they did not like the ranking of d2 behind d3. The ranking 

approach proposed here will rectify this undesired ranking. 

Table 3: The Wu and Zhang patterns for the designs of Table 1 

 Rank A30 A31 A32 A40 A41 A42 A52 
1 (d3) 4 0 2 3 0 0 1 1 
2 (d1) 1 0 1 3 0 1 2 0 

3 1 0 1 3 0 1 2 0 
4 (d2) 5 1 0 3 0 0 3 0 

5 1 0 1 3 0 1 2 0 
6 5 1 0 3 0 0 3 0 

 

WZ restricted attention to a very specific class of designs, for which the 4-level factor(s) can be 

constructed from the first two or four base factors of a regular fractional factorial 2-level design; all 

their designs are therefore regular. Design 3 of Example 1 is not of that nature, but nevertheless shows 

the same WZ pattern as the best WZ design. For the 16 run cases, it has been investigated whether 

there are better designs according to the WZ criterion within the larger set of all the non-isomorphic 

designs with the respective numbers of factors and levels. (Attention was restricted to the 16 run 

designs, because there is an easily manageable number of them, whereas the 32 runs designs have not 

even been enumerated by Schoen and Eendebak 2010.) It was found that the WZ Type 0 MA designs 

remain best in the overall set of designs according to the WZ criterion (verified for up to A4j values 

only). However, their performance regarding the new criteria is generally lacking – in many cases they 

are close to the worst designs. This is not surprising because regular designs have repeatedly been 

found to have undesirable projection properties, e.g. by Xu and Deng (2005). 

An obvious generalization of WZ’s method for designs with two numbers of levels of any sort, e.g. 

with 2- and 3-level factors, is to look at exactly the same concept, with the second index providing the 
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number of factors with more levels in the projection. For example, an OA(18, 21 37, 2) would have A32 

and A33, A43 and A44 and so forth. In this way, it is possible to handle any designs with only two 

different numbers of levels. However, if both numbers of levels occur with higher frequency, the 

situation becomes more complex. For example, for an OA(36, 25 36, 2), there are A30, A31, A32, A33, A40, 

A41, A42, A43, A44, and so forth. In such cases, WZ’s approach of primarily ranking w.r.t. one particular 

type of words and using the other types of words for resolving ties only becomes more and more 

problematic. This has also been noted by WZ, who discussed in the end of their paper to also take 

second best designs into consideration or to take weighted sums of the Aij. The proposals of Section 3 

take up the idea of weighted sums, however not on the overall GWLP level but for projections instead. 

The weights arise very naturally from the perspective of averaging R2 values that became available 

through the work of Grömping and Xu (2013). This approach also works for designs with more than 

two different numbers of levels, for which generalization of the WZ approach would be even more 

cumbersome than outlined above, because the definition and ranking of the types of numbers of words 

to look at has to be tackled. Section 3.4 contains two examples with three different numbers of levels, 

for which a third subscript to the “A”s has been introduced and an order of the word types has been 

arbitrarily fixed. These underline the complexity involved in WZ’s approach. 

3. The new criteria  
The following definitions will be demonstrated with a worked example of an 8 run design with two 2-

level factors and one 4-level factor (see Table 4), before applying them all to the designs from Table 1.  

Table 4: An OA(8, 4122, 2) (transposed) 
A 1 1 1 1 2 2 2 2 
B 1 1 2 2 1 1 2 2 
C 1 3 2 4 4 2 3 1 

 

Table 5: The model matrix up to 2-factor interactions for the design of Table 4 

33 31 2 1 2 1 2

6 10 134 5 8 9 11 121 2 3 7
BCC ACC C AC AC BC BCA B AB

1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3
1 1 1 0 8 3 1 3 1 0 8 3 1 3 0 8 3 1 3
1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3
1 1 1 0 0 3 1 0 0 3 0 0 3
1 1 1 0 0 3 1 0 0 3 0 0 3
1 1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3
1 1 1 0 8 3 1 3 1 0 8 3 1 3 0 8 3 1 3
1

− − − − −
− − − − −
− − − − − − −
− − −

− − −
− − − − − − −

− − −
1 1 2 2 3 1 3 1 2 2 3 1 3 2 2 3 1 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − − − − − − −⎝ ⎠

 

 
Table 5 shows the model matrix with interactions up to degree 2 for the following normalized 

orthogonal coding for the main effects: factors A and B are coded in -1/+1 coding (1 coded with -1), 
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factor C in normalized Helmert coding. All columns of the matrix have squared length N=8, and the 

main effects model matrix columns are orthogonal to each other, implying uncorrelated estimation of 

main effects in the absence of 2-factor interactions. A3 = a3(1,2,3) = 1 can then be obtained 

• from the matrix of three-factor interactions (not shown) by the definition,  

• as the single R2 value from regressing any of the 2-level columns on the full model matrix in 

the other two factors (e.g. column 2 on columns 1, 3 to 6, 11 to 13); with the coding of 

Table 5, the right-hand side can omit all main effects columns, i.e. columns 11 to 13 suffice 

for the right-hand side. 

• as the sum of the three R2 values from regressing the main effects columns of the 4-level 

factor (columns 4 to 6) on the full model in the two-level factors (columns 1 to 3 and 7); these 

are 0.5, 1/6 and 1/3, respectively. Again, the coding of Table 5 allows to restrict the right-hand 

side to column 7.  

• as the only squared canonical correlation from column 2 vs the full model matrix in factor B 

and C without intercept (columns 3 to 6 and 11 to 13; restrictable to columns 11 to 13)  

• as the only squared canonical correlation from column 3 vs the full model matrix in factor A 

and C without intercept (columns 2, 4 to 6 and 8 to 10, restrictable to columns 8 to 10)  

• as the sum of the three squared canonical correlations from columns 4 to 6 vs the full model 

matrix in factors A and B without intercept (columns 2, 3, 7, restrictable to column 7). The 

squared canonical correlations are 1, 0, 0 with the three columns 2, 3 and 7 on the right-hand 

side, and 1 with only column 7 on the right-hand side. This latter case illustrates that it is 

possible to have fewer canonical correlations than the left-hand side factor has df. If that 

happens, the squared canonical correlations will be supplemented with the appropriate number 

of zeroes, in order to have always a squared canonical correlation for each df. 

3.1. Average R2 frequency tables (ARFTs) 
According to Lemma 1, aR(u1,…,uR) is a sum of R2 values when regressing the main effects model 

matrix Xc on the full model matrix of the other R−1 factors in the projection indexed by {u1,…,uR}, 

and it was discussed before, that the average R2 value aR(u1,…,uR)/(sc − 1) is a reasonable measure for 

the degree of aliasing for factor c. In the above example, the average R2 value is 100% for the two 2-

level factors, but 33.3% only for the 4-level factor (of course, both 2-level factors and generally all 

factors with the same number of levels in the same projection have the same average R2 value). The 

idea of the average R2 frequency tables is to simply tabulate these individual averages for all factor 

projection combinations from R factor projections, so that the sum of the frequencies is ( )nR R : 
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Definition 2:  

(i) For an OA(N, s1,…,sn, R−1), the average R2 frequency table (ARFTR) is the frequency table of 

the ( )nR R  values ( ) ( )1,..., 1
iR R ua u u s − , {u1,…,uR} ⊆ {1,…,n}, i=1,…,R. 

(ii) Minimum average R2 aberration ranks designs according to their ARFTR, in complete analogy 

to minimum projection aberration. 

 

For the worked example, n=R=3, a3(1,2,2)=1, s1=s2=2, s3=4, so that ARFT3 from the only projection is 

a table of the three values 1/1, 1/1 and 1/3, i.e.  

Average R2  1/3 1 

frequency  1 2 

The interpretation of this table is straightforward: For two factor-projection combinations the average 

R2 of the main effects model matrix columns is “1”, i.e. main effects of the respective factors in the 

respective R-factor projections are completely aliased; for one factor-projection combination, the 

average R2 is 1/3, i.e. the respective factor is partially aliased in the respective R-factor projection.  

Grömping and Xu (2013) defined generalized resolution (GR) as a generalized version of Deng and 

Tang’s (1999) definition. In terms of average R2 values, their definition can be written as 

2
worst1 aveGR R R= + − , i.e. the next larger resolution is reduced by the square root of the worst case 

average R2. Consequently, GR can be obtained from ARFTR by subtracting the square root of the 

largest table header from R+1. As the largest header for the worked example is “1”, the example 

design has GR=3. 

3.2. Squared canonical correlation frequency tables (SCFTs) 
ARFTR does not differentiate between situations for which the average “1/3” is the result from e.g. 

three main effects columns each of which has an R2 value of 1/3 or from one column with an R2 of 1 

and two columns with an R2 of 0. This does matter for the SCFTs considered in this section: Instead of 

the factor – projection combination considered by ARFTs, SCFTs consider the df – projection 

combination as the unit of tabulation. As motivated in Section 2.4, individual main effect df should be 

considered based on the coding-invariant squared canonical correlations from considering the main 

effects model matrix of a particular factor on the Y side, the full model matrix of R−1 other factors on 

the X side of a canonical correlation analysis. The squared canonical correlations provide the R2 values 

for individual df that one obtains with the worst case coding, where “worst case” means that the sum 

aR(u1,…,uR) of individual R2 values is distributed over individual main effects df of the Y side factor as 

unequally as possible. SCFTR tabulates a value for each main effects df within each factor projection 

combination: 
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Definition 3:  

(i) For an OA(N, s1,…,sn, R−1), the squared canonical correlation frequency table (SCFTR) is the 

frequency table of the ( ) ( )
1

11 1
n

i
i

ns R
=

−− −∑  squared canonical correlations between the main 

effects model matrix Xc for a factor c ∈ {u1,…,uR} ⊆ {1,…,n} and the model matrix XC of the 

full model in the factors of C = {u1,…,uR} \{c}. 

(ii) Minimum squared canonical correlation aberration ranks designs according to their SCFTR, in 

complete analogy to minimum projection aberration. 

 

For the worked example, the single squared canonical correlation from each 2-level factor’s main 

effects column in the role of Xc is 1 (has to be equal to the R2), and the canonical correlations with the 

4-level factor main effects matrix in the role of Xc are a 1 and two zeroes, as was discussed in the 

beginning of this section. The table thus shows three ones and two zeroes: 

Squared canonical correlation  0 1 

frequency    2 3 

The benefit of a good ranking in terms of minimum squared canonical correlation aberration is less 

obvious than that of minimum average R2 aberration. Therefore, we consider an additional example: 

Example 2: There are 44 non-isomorphic OA(32, 43, 2), 10 of which are GMA (1 word of length 3). 

The best and worst designs and their SCFT3 tables are given in Table 6. In the worst case, the one 

word of length 3 can be concentrated on a single df for all three factors in the only 3-factor projection. 

This implies the pattern of three ones and six zeroes that is observed for the worst design of Table 6. 

In the best case, the one word of length 3 is as evenly distributed over the df as possible for an OA 

(there is no design with 9 squared canonical correlations of 1/3 each).  

Table 6: The best and worst GMA OA(32, 43, 2) and their SCFT3 

SCFT3 
 0 0.25 0.375 1 
best 0 3 6 0 
worst 6 0 0 3 

Best design (number 9 among the GMA designs, transposed) 
A 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 
B 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 
C 1 2 1 3 2 4 3 4 1 3 2 4 1 4 2 3 2 4 2 3 1 3 1 4 3 4 1 4 2 3 1 2  

Worst design (number 1 among the GMA designs, transposed) 
A 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 
B 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 
C 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 
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Table 7 shows the frequency distribution of the best and the worst design; besides the fact that the 

worst design has only 16 distinct runs, while the best design has 26 distinct runs, the critical 

characteristic to which SCFT3 has responded is the very systematic pattern of factor level 

combinations attained in the worst design: each (1,2) vs. (3,4) contrast is completely aliased with the 

2-factor interaction of the other (1,2) vs. (3,4) contrasts. This is most easily seen for the relation of 

factor C to the AB interaction: C in (1,2) only occurs with either both A and B in (1,2) or with both A 

and B in (3,4), while C in (3,4) only occurs for the other two cases. The worst design has such a 

completely confounded df for each of its factors, while the best design does not display any such 

pattern.  

Table 7: Combination frequencies for the best and worst design of Table 6  

   Best  Worst 
  C 1 2 3 4  1 2 3 4 
A B           
1 1  2 0 0 0  2 0 0 0 
 2  0 2 0 0  0 2 0 0 
 3  0 0 2 0  0 0 2 0 
 4  0 0 0 2  0 0 0 2 
2 1  0 2 0 0  0 2 0 0 
 2  0 0 1 1  2 0 0 0 
 3  1 0 0 1  0 0 0 2 
 4  1 0 1 0  0 0 2 0 
3 1  0 0 1 1  0 0 2 0 
 2  2 0 0 0  0 0 0 2 
 3  0 1 0 1  2 0 0 0 
 4  0 1 1 0  0 2 0 0 
4 1  0 0 1 1  0 0 0 2 
 2  0 0 1 1  0 0 2 0 
 3  1 1 0 0  0 2 0 0 
 4  1 1 0 0  2 0 0 0 

 

In the previous section, we saw that ARFTR is related to the generalized resolution GR. 

Straightforward considerations imply that GR=R  comes with at least one squared canonical 

correlation of “1”. The reverse is not true, though. SCFTR is related to a different type of generalized 

resolution, GRind: Grömping and Xu (2013) introduced GRind as the stricter version of generalized 

resolution that reacts to the most severe aliasing in individual main effects df. Thus, 

ind 1;1 max RGR R r= + −  with r1;R denoting the largest canonical correlation occurring in any R-factor 

projection. GRind can thus be obtained from SCFTR by subtracting the square root of the largest table 

header from R+1, i.e. in the same way in which GR can be obtained from ARFTR. 

SCFTR has a relation to another concept: design regularity. The worst design of Tables 6 and 7 is a 

regular design, as defined e.g. in Wu and Hamada (2009): all its df are either completely aliased or 

independent. It can be shown that all regular designs in this sense have SCFTR with headers “0” and 
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“1” only (completely aliased df are reflected by squared canonical correlations of “1”, independent 

effects by squared canonical correlations of “0”). As was previously observed, regular designs often 

have undesirable projection properties (cf. e.g. Xu and Deng 2005). This is also seen here, as – for a 

given number of words of length R – the “0”-“1” type SCFTR are necessarily worst. Unfortunately, for 

setups where regular designs are possible, catalogued designs are often regular (e.g. many of the 

designs in the Kuhfeld 2009 catalogue).  

3.3. Projection average R2 frequency tables (PARFTs) 
In this section, the unit of tabulation is the projection again, like for PFT. Now, a decision for a 

weighting approach is needed in order to aggregate the several average R2 values into one number for 

each projection. It appears natural to obtain an average of the R factor wise average R2 for each R 

factor projection. PARFTR tabulates these averages: 

Definition 4:  

(i) For an OA(N, s1,…,sn, R−1), the projection average R2 frequency table (PARFTR) is the 

frequency table of the ( )n
R  values ( )1

1

1 1,...,
1

R
R R

ui i

a u u
R s= −∑ , {u1,…,uR} ⊆ {1,…,n}. 

(ii) The respective minimum projection average R2 aberration ranks designs according to their 

PARFTR in complete analogy to minimum projection aberration. 

 

For the worked example, n=R=3, so that there is only one projection. The multiplier for a3(1,2,3)=1 is 

the average of the inverse factor dfs 1/(sui−1) (i.e., (1+1+1/3)/3=7/9). Thus, the design in the worked 

example has a PARFT3 with the only entry “1” for the header 7/9. For only 2-level factors, PARFT 

would use unmodified projection frequencies, for only 4-level factors, PARFT would divide the 

projection frequency by 3, and for triples with one 2-level and two 4-level factor, the multiplier would 

be 5/9.  

It would also be possible to average all individual df R2 values within each projection, without prior 

averaging per factor (while the individual df R2 values are coding dependent, their average is not). 

This would imply weighting 1( ,..., )R Ra u u  with 
1

( ... )
Ru uR s s+ + ; these weights would be only 

driven by the overall number of df in a projection, while PARFTR from the definition also focuses on 

the distribution of the df over the factors. For many practically relevant situations, a df-based 

weighting behaves almost the same as the PARFTR from the definition; there are big differences in 

case of a few factors with many levels, where the behavior of PARFTR from the definition seems more 

adequate. Therefore, the alternative weighting has not been pursued. 



16 
 

After defining the new criteria, the next section applies them to some example situations, starting with 

Example 1 that was considered above.  

3.4. Examples 

Table 8: The new criteria for the six non-isomorphic OA(16, 2342, 2) of Table 1 

 WZ3 
R

an
k 

 
PFT3 

R
an

k 
 

ARFT3 SCFT3   PARFT3  
 

A30 A31 A32 0 1/2 1 0 1/6 1/3 1/2 1

R
an

k 

0 1/2 1

R
an

k 

0 7/18 5/9 7/9 1

R
an

k 

PARFT 
weight 1 7/9 5/9                    

1 (d3) 0 2 3 4 5 0 5 6 15 0 8 0 7 6 39 0 15 6 5 0 3 2 0 4 

2 (d1) 0 1 3 1 6 0 4 2 18 0 7 0 5 2 42 0 12 4 6 0 3 1 0 2 

3 0 1 3 1 5 2 3 1 15 2 6 4 3 1 35 14 5 1 5 2 3 0 0 1 

4 (d2) 1 0 3 5 6 0 4 2 18 0 6 0 6 4 42 0 12 4 6 0 3 0 1 5 

5 0 1 3 1 6 0 4 2 18 0 7 0 5 2 38 8 8 2 6 0 3 1 0 2 

6 1 0 3 5 6 0 4 2 18 0 6 0 6 4 38 8 8 2 6 0 3 0 1 5 

Example 1 revisited: Table 8 shows all criteria regarding 3-factor projections of the six designs from 

Table 1, including those already presented in Tables 2 and 3. Before interpreting the criteria, we will 

consider the calculation of the new criteria from WZ3 and PFT3 and technical relations among the 

criteria: First of all, the sum of the WZ3 entries is (of course) A3 (5 for design 1, 4 for the other 

designs). For PFT3, the sum of the products of frequencies with headers is A3, the same is true for a 

third of the sum of products of frequencies with headers for SCFT3. The sum of the frequencies 

themselves is ( )53 303 = for ARFT3, ( )49 542 = for SCFT3 and ( )5 103 =  for PARFT3 (like for PFT). For 

most designs in the table, a projection has either 0 or 1 words of length 3. ARFT3 and PARFT3 can be 

worked out from WZ3, as each type of projection has a specific composition in terms of numbers of 

levels and a specific PARFT weight: For (2,4,4) projections, the PARFT weight is the average of 1, 

1/3 and 1/3, i.e. 5/9. Thus, in PARFT3, the “1” values from such projections become “5/9”; 

analogously, the “1” values from (2,2,4) projections become “7/9”. The remaining projections (up to 

the overall total of 10) contribute the “0” entries. For design 3, there are two projections with ½ words 

of length 3. These are from (2,2,4) triples (not obvious from the table, found out by inspection), i.e. the 

“0.5” has to be multiplied with the PARFT weight “7/9”, which yields the PARFT3 header “7/18” with 

frequency 2 for design 3. For obtaining ARFT3 from WZ3 and PFT3, note that any 2-level factor in the 

projection simply contributes the number of words of the projection as average R2, while any 4-level 

factor contributes a third of that number. Consequently, apart from the zeroes, there are the ARFT 

headers “1” and “1/3” for most designs, and the additional “1/2” and “1/6” for design 3. Let us 

conclude this technical portion with the detailed derivation of ARFT3 for design 3: A32=3 comes from 
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three (2,4,4) projections with one word each and translates into the entry “3” for the average R2 “1” 

from the single 2-level factor and the entry “6” for the average R2 “1/3” from the two 4-level factors in 

these projections; A31=1 comes from two (2,2,4) projections with half a word each and translates into 

the entry “4” for the header “1/2” from the two 2-level factors and the entry “2” for the header “1/6” 

from the single 4-level factor in these projections. The further tables in this section will still report 

enough detail for such cross-comparisons, but the detail will not be spelled out at such length. 

Turning to interpretation of Table 8, all criteria agree that the best design is design 3, like it was with 

PFT3 and WZ (for WZ tied with designs 2 and 5): the design has the fewest factor-projection 

combinations with complete aliasing (average R2 of 1), it has only 5 df-projection combinations with 

squared canonical correlation 1, and the worst projection average R2 for this design is smallest. All 

criteria also single out design 1 (=d3), which is worst under PFT3, ARFT3 and SCFT3, but not worst for 

PARFT3 and WZ3. The four designs that were equivalent under PFT3 are divided into groups of two by 

the other criteria: ARFT, PARFT and WZ agree in the group division and in the ranking between the 

two groups (d1 before d2), SCFT creates a different grouping and ranks both d1 and d2 together (and as 

worse than the other two).   

Example 2 revisited: The two OA(32, 43, 2) of Table 6 are fixed level designs with s=4 levels for each 

factor. Consequently, PFT3, PARFT3 and ARFT3 are equivalent, and the Wu and Zhang approach is 

equivalent to GMA. Table 9 shows the quality criteria for these designs. PARFT headers and ARFT 

headers are 1/(s−1)=1/3 times the PFT headers, and PARFT entries coincide with PFT entries, while 

ARFT entries are R times the respective PFT entries. As was discussed previously, SCFT3 is the only 

criterion that adds independent information. 

Table 9: The quality criteria for the designs from Table 6 

 WZ3 PFT3 ARFT3 SCFT3 PARFT3 
 

A33 1 1/3 0 1/4 3/8 1 1/3 

PARFT 
weight 1/3        

Best 1 1 3 0 3 6 0 1 

Worst 1 1 3 6 0 0 3 1 

 

Example 3: This example uses the five OA(64, 244381, 2) that can be obtained as projections of the 

OA(64, 2541084, 2) of Kuhfeld (2009) and have the minimum number of length 3 words, which is 

A3=7. All five designs are regular, and all have the same PFT3 with seven ones and 49 zeroes. They 

also have the same SCFT3 with 21 ones and 399 zeroes. The WZ3, ARFT3 and PARFT3 patterns are 

different, however (see Table 10). The projection types for the Wu and Zhang assessment have been 

ordered as (2,2,2), (2,2,4), (2,2,8), (2,4,4), (2,4,8), (4,4,4), (4,4,8) from most to least serious (a ranking 
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that only considers the overall number of df in a projection would deviate from this order). Note the 

increased complexity from having more 4-level factors and an additional 8-level factor in the design. 

According to the pattern of length 3 words of different types, design 3 is best, followed by tied designs 

1 and 4. Design 2 is worst. ARFT3 and PARFT3 arrive at the same ranking as WZ3 for this example, 

while PFT3 and SCFT3 consider all designs as equally good, as was mentioned before. 

Table 10: Five minimum A3 OA(64, 244381, 2) as projections from a regular OA(64, 2541084, 2)  

(A3ij refers to words of length 3 from projections with i 4-level and j 8-level factors; 

PFT3: seven ones,  49 zeroes) 

 WZ3 

ra
nk

 ARFT3 

ra
nk

 PARFT3 

ra
nk

 

 A300 A310 A301 A320 A311 A330 A321 0 .143 .333 1 0 .270 .333 .492 .556 .714

PARFT 
weight 1 .778 .714 .556 .492 .333 .270             

1 0 0 0 0 4 0 3 2 147 7 10 4 2 49 3 0 4 0 0 2 
2 0 0 1 1 2 0 3 5 147 6 10 5 5 49 3 0 2 1 1 5 
3 0 0 0 0 3 1 3 1 147 6 12 3 1 49 3 1 3 0 0 1 
4 0 0 0 0 4 0 3 2 147 7 10 4 2 49 3 0 4 0 0 2 
5 0 0 0 1 3 0 3 4 147 6 11 4 4 49 3 0 3 1 0 4 

 

Example 4. This example considers the eleven non-isomorphic GMA OA(64, 4322, 3) that were 

obtained from Eendebak and Schoen (2013).  

Table 11: SCFT4 for the 11 GMA OA(64, 2243, 3) from Eendebak and Schoen (2013) 

 WZ4 PFT4 ARFT4 PARFT4  SCFT4 
 A42 A43 0 1 0 1/3 1 0 1/2 

Rank 

0 0.25 0.5 0.75 1 
PARFT 
weight 2/3 1/2             

1 0 2 3 2 12 6 2 3 2 11 36 0 0 0 8 
2 0 2 3 2 12 6 2 3 2 9 33 3 0 3 5 
3 0 2 3 2 12 6 2 3 2 10 34 0 4 0 6 
4 0 2 3 2 12 6 2 3 2 7 33 0 6 0 5 
5 0 2 3 2 12 6 2 3 2 7 33 0 6 0 5 
6 0 2 3 2 12 6 2 3 2 4 30 6 0 6 2 
7 0 2 3 2 12 6 2 3 2 6 32 0 8 0 4 
8 0 2 3 2 12 6 2 3 2 5 29 4 8 0 3 
9 0 2 3 2 12 6 2 3 2 2 30 0 12 0 2 

10 0 2 3 2 12 6 2 3 2 1 26 8 8 0 2 
11 0 2 3 2 12 6 2 3 2 2 30 0 12 0 2 

 

These mixed level strength 3 plans are of equal quality based on all criteria except for SCFT4 (see 

Table 11): they have (A4, A5) = (2, 1), and one word of length 4 each comes from the two quadruples 

with one 2-level and three 4-level factors. Thus, each PFT4 has two ones and three zeroes, PARFT4 

replaces each one with a 0.5 and keeps the zeroes unchanged, and each ARFT4 has frequency “2” for 

the entry “1” and frequency “6” for the entry “1/3” from these quadruples, with 12 zeroes from the 
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other three quadruples. SCFT4 contains additional information: apart from two tied pairs, it uniquely 

ranks the 11 designs. For the first=worst design, it is possible to code the factors such that the one 

word of length 4 in the respective quadruple relates to a single df for all four factors in both 

quadruples. This is not the case for any other design. For the best four designs, only the 2-level factor 

within each quadruple has a completely confounded df (which cannot be avoided, of course). 

Example 5. This example considers the four non-isomorphic GMA OA(64, 2443, 3) that were also 

obtained from Eendebak and Schoen (2013). Table 12 shows all criteria for these designs. WZ4 

considers all designs equally suitable, PFT4, ARFT4 and PARFT4 distinguish between the first and the 

other three designs (first=worst, the only regular design among the four), and SCFT4 can uniquely rank 

all four designs. The SCFT4 entry “32” for the first design implies that each of the 8 4-factor 

projections with one word of length 4 can be coded such that there is a completely aliased df for each 

of the four factors in the projection. For the other three designs, the worst possible coding in terms of 

concentrating all the confounding on a particular df turns up 20, 18 or 16 completely aliased df only. 

Table 12: Quality criteria for the four non-isomorphic GMA OA(64, 4324, 3) 

  WZ4 

ra
nk

 PFT4 

ra
nk

 ARFT4 
ra

nk
 PARFT4 

ra
nk

 SCFT4 

ra
nk

 

  A40 A41 A42 A43 0 1/2 1 1 1/6 1/3 1/2 1 0 1/31/22/3 0 1/4 1/2 1
 PARFT4 
weight 1 5/6 2/3 1/2                     

1  0 0 4 4 1 27 0 8 4 108 0 20 0 12 4 27 0 4 4 4 228 0 0 32 4
2  0 0 4 4 1 25 4 6 1 100 8 16 8 8 1 25 4 4 2 1 216 0 24 20 3
3  0 0 4 4 1 25 4 6 1 100 8 16 8 8 1 25 4 4 2 1 214 0 28 18 2
4  0 0 4 4 1 25 4 6 1 100 8 16 8 8 1 25 4 4 2 1 204 16 24 16 1

 

Example 6. The final example investigates the 14 non-isomorphic OA(24, 2114161, 2) from Eendebak 

and Schoen (2013). All 14 designs have the same GWLP and WZ3 patterns: (A3,…,A13)=(42, 103, 

245.33, 333.33, 484, 436.33, 218.67, 141.33,  34, 9, 0), (A300, A310, A301, A311) = (4,7,20,11), where A3ij 

refers to words of length 3 from projections with i 4-level and j 6-level factors. PFT3 (see Table 13) 

shows a much more diverse pattern for these designs than for the ones considered in the previous 

examples, and ARFT3 and PARFT3 (not shown) diversify even more, because particular headers of 

PFT3 imply different average R2 for different factors in a projection (ARFT3) or have different weights 

according to different projection types (PARFT3). However, the ranking cannot be refined by 

including ARFT, PARFT or SCFT for this example. 
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Table 13: PFT3 for the 14 non-isomorphic OA(24, 2114161, 2) 

ID Rank 

 0 1/9 1/3 4/9 5/9 2/3 1 
projection 

types 
(2,2,2) 
(2,2,6) 

(2,2,2) 
(2,2,4) 

(2,2,6) (2,2,2) (2,2,6) (2,2,6) (2,4,6)
(2,2,4) 

PARFT 
weights 

 

1 
0.7333 

 

1 
0.7778 

 

0.7333 
 

1 
 

0.7333 
 

0.7333 
 

0.5111 
0.7778 

 
1 13  140 90 28 0 0 16 12 
2 1  152 73 28 4 2 16 11 
3 1  152 73 28 4 2 16 11 
4 13  140 90 28 0 0 16 12 
5 1  152 73 28 4 2 16 11 
6 1  152 73 28 4 2 16 11 
7 12  136 90 36 0 0 12 12 
8 5  156 73 20 4 2 20 11 
9 5  156 73 20 4 2 20 11 

10 5  156 73 20 4 2 20 11 
11 5  156 73 20 4 2 20 11 
12 5  156 73 20 4 2 20 11 
13 5  156 73 20 4 2 20 11 
14 5  156 73 20 4 2 20 11 

 

4. Applications 

4.1. Ranking recommendations 
Generally, it is most desirable to rank designs according to their behavior w.r.t. the most severe 

confounding, i.e. w.r.t. confounding from R factor projections in resolution R designs. That was the 

rationale of the proposal to look at PFTs; however, PFTs must be considered as problematic for mixed 

level designs. The other existing criterion, Wu and Zhang’s approach, becomes quite complicated for 

complex design structures (see e.g. Example 3) and is not always perceived as appropriate with its 

stepwise approach (e.g. Wu and Zhang’s own criticism of the ranking of d2 and d3 in Example 1). The 

three new criteria from the previous section are possible alternatives: ARFTR tabulates an average R2 

value per factor-projection combination, PARFTR tabulates an average of average R2 values for each 

projection, SCFTR tabulates a squared canonical correlation per combination of main effects degree of 

freedom with projection. As mentioned before, the approach taken by SCFTR tabulates the df wise R2 

values, provided the maximally concentrated factor parametrization has been used.  

As SCFTR concentrates on the detail within each factor and assumes a worst case factor 

parametrization, it is considered as a secondary criterion, after using one of the other criteria as the 

primary one. The previous section has already illustrated the differences between the criteria. This 

section discusses which primary criterion should be used in the mixed level case (for fixed level 

designs, we use PFTR, which is equivalent to the other two).  
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Table 8 above showed the new quality criteria for all designs from Table 1. In this example, ARFT3 

ranked the Wu and Zhang designs d1, d2 and d3 the way Wu and Zhang (1993) would have liked their 

method to work, while PARFT3 ranked design d3 before d2 like the WZ method does. What is the 

reason for this behavior? Put simply, ARFTR considers complete confounding for a particular 2-level 

factor as equally severe, regardless if the factor is confounded from an R-tuple with only 2-level 

factors in which the other 2-level factors are also completely confounded or if the factor is confounded 

from an R-tuple with e.g. R−1 4-level factors for which the 4-level factors are partially confounded 

only. On the contrary, PARFTR downweights average R2 values from projections with more df. 

Design d2 has a completely confounded triple of 2-level factors, which accounts for three ARFT3 

entries of “1” each, and there are three further average R2 values of “1” that originate from the triples 

of the three 2-level factors with both 4-level factors. Design d3 has 7 R2 values of “1”, but none of 

them comes from the triple with all 2-level factors; instead, two triples with one 4-level factor and two 

2-level factors are affected. As a consequence from considering the A30 first for WZ3 or from 

considering averages within a projection for PARFT3, design d2 takes on the worst case in WZ3 and 

PARFT3, while design d3 does not. It is now a matter of judgment, which ranking behavior appears 

more appropriate. While one might argue that two-factor interactions are more likely to be strong if 

only 2-level factors are involved, there is no real evidence to back this up. Therefore, this report 

recommends ARFTR as the most suitable criterion for the primary ranking of designs. In most cases, 

PARFTR will not further distinguish ties from ARFTR, so that PARFTR should not be considered. 

SCFTR can be quite helpful as a secondary criterion, as discussed above. If ARFTR and SCFTR cannot 

distinguish between designs, higher dimensions can be considered. As the new criteria are not defined 

for higher dimensions, GWLP and PFT have to be used. 

4.2. Detection of non-equivalence 
PFTs have been previously used for distinguishing more designs than possible with other criteria (e.g. 

Schoen 2009). PFTs, ARFTs and PARFTs are all based on the projection frequencies aR(u1,…,uR), 

thus substantial additional discriminatory power cannot be expected from ARFTs and PARFTs. 

SCFTs, however, use an additional source of information, the canonical correlations. This implies that 

they can contribute an independent source for the assessment of non-isomorphism. The following 

example shows that SCFTs can add substantial discriminatory power: Table 14 shows the numbers of 

classes distinguished for the tractable series of non-isomorphic OA(32,4a,2). Clearly, SCFT3 is the key 

contributor to discriminating among these. 
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Table 14: Number of classes distinguished for OA(32,4a,2), a=3,4,6,7,8,9 

a No. 
designs G

W
LP
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T 3

 

SC
FT
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T 3
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PF
T 4
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T 3
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FT
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G
W
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SC
FT

3, 
PF

T 3
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G

W
LP

 

al
l f

ou
r 

cr
ite

ria
 

3 44 12 12 40 40 12 40 12 12 40 40 40 

4 32983 51 211 11324 11339 287 11748 287 287 11733 11748 11748 

5 108339            

6 31779 171 2705 26038 26482 12242 28017 4037 12242 26546 26875 28017 

7 6564 114 869 5332 5400 3056 5747 1218 3056 5375 5429 5747 

8 283 7 76 211 212 192 241 76 270 211 212 241 

9 20 1 12 15 15 15 15 12 15 15 15 15 

 

5. Discussion 
This report introduced three new metrics for assessing the quality of orthogonal arrays. It has been 

argued that the projection frequency tables introduced previously (Xu, Cheng and Wu 2004) and used 

for both fixed and mixed level designs e.g. by Schoen (2009) should not be used for ranking mixed 

level designs, because they yield unfair comparisons of projections with different patterns of numbers 

of factor levels. The primary metric for comparing R factor projections of resolution R designs should 

be ARFTR, the average R2 table over all factors in R-factor projections. This table has an entry for each 

factor in each of its R-factor projections and thus avoids the need to obtain an overall assessment of a 

mixed-level projection. The new squared canonical correlation table, SCFTR, considers the distribution 

of R2 values from regressing individual main effect df on full models in R−1 other factors, given the 

factor is coded in the worst possible orthogonal way in terms of concentrating all the confounding on a 

few df. For regular designs, SCFTR has the headers “0” and “1” only, implying complete or no 

confounding for all main effects df in worst case coding. The third metric that was introduced here, 

PARFTR, averages the R ARFTR contributions for each projection before tabulation; as PARFTR may 

seem a natural alternative or even preferable to some readers, this metric has been included here, 

although the author does not recommend its use. 

Wu and Zhang (1993) previously proposed separate consideration of numbers of words from different 

types of projections and introduced the criterion “type 0 MA”. They treated designs with two- and 

four-level factors, for at most two four-level factors, and they provided a few optimal designs under 

their criterion. A few other authors followed up on their proposal: Mukerjee and Wu (2001) 

generalized their approach to designs in n factors at s levels with one factor at sr levels or one factor 

each at sr1 and sr2 levels. Ankenman (1999) studied two- and four-level designs, but disagreed with Wu 

and Zhang’s distinction of different types of words and used the overall GWLP later defined in general 

by Xu and Wu (2001); he provided some minimum aberration designs according to his perspective. 

Wu and Hamada (2009) also provided some minimum aberration designs in two and four levels 
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according to the Wu and Zhang approach. In this report, a generalized version of the Wu and Zhang 

approach was applied to mixed level designs for several of the examples, not restricting attention to 

designs with at most two factors at a larger number of levels, and neither to designs with all numbers 

of levels a power of the same s. However, Example 3 (Table 10) showed that WZ’s approach gets 

intricate with more different levels and more factors per level. Thus, it is not surprising that the WZ 

type 0 MA approach has not entered statistical practice in any breadth. Average projection frequency 

tables (ARFTs) share the advantages of the Wu and Zhang method without carrying its burden of 

complexity. Ties from ranking by ARFTR should be resolved by SCFTR.  

SCFTR also yields an additional possibility for assessing design equivalence: equivalent designs must 

have the same SCFTR; Table 14 shows that SCFTR is able to discriminate large sets of non-isomorphic 

designs into very many equivalence classes, which substantially reduces the burden of isomorphism 

checking. However, there are also cases for which all SCFTs are the same, while other criteria 

discriminate between designs.  

Acknowledgements 
Eric Schoen contributed orthogonal arrays. Eric Schoen and Hongquan Xu were competent discussion 

partners regarding the appropriate way of quantifying confounding for mixed level OAs. Hongquan 

Xu gave valuable comments on the manuscript. 

References 
Ankenman, B.E. (1999). Design of Experiments with Two- and Four-Level Factors. Journal of Quality Technology 31, 363-

375. 
Deng, L.Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other 

nonregular factorial designs. Statistica Sinica 9, 1071-1082. 
Eendebak, P.T. and Schoen, E.D. (2013). Complete series of non-isomorphic orthogonal arrays. URL: 

http://pietereendebak.nl/oapage/ Accessed May 24, 2013. 
Evangelaras, H.,  Koukouvinos, C. and Lappas, E. (2007). 18-run nonisomorphic three level orthogonal arrays. Metrika  66,  

31-37. 
Evangelaras, H.,  Koukouvinos, C. and Lappas, E. (2011). 27-run nonisomorphic three level orthogonal arrays: Identification, 

evaluation and projection properties. Utilitas Mathematica  84, 75-87. 
Grömping, U. (2013). The DoE.base Package (Full factorials, orthogonal arrays and base utilities for DoE packages). R 

package version 0.25-2. In: R Core Team (2013). R: A Language and Environment for Statistical Computing, R 
Foundation for Statistical Computing, Vienna, Austria. 

Grömping, U. (2011). Relative projection frequency tables for orthogonal arrays. Report 1/2011, Reports in Mathematics, 
Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin. 

Grömping, U. and Xu, H. (2013). Generalized resolution for orthogonal arrays. Report 1/2013, Reports in Mathematics, 
Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin. 

Härdle, W. and Simar, L. (2003). Applied multivariate statistical analysis. Springer, New York.  
Hedayat, S., Sloane, N. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York. 
Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika 28, 321–377. 
Kuhfeld, W. (2009). Orthogonal arrays. Website courtesy of SAS Institute   

http://support.sas.com/techsup/technote/ts723.html. 
Mukerjee, R. and Wu, C.F.J. (2001). Minimum Aberration designs for mixed factorials in terms of complementary sets. 

Statistica Sinica 11, 225-239. 
R Core Team (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 

Vienna, Austria. 



24 
 

Schoen, E.D. (2009). All orthogonal arrays with 18 runs. Quality and Reliability Engineering International 25, 467-480. 
Schoen, E.D., Eendebak, P.T. and Nguyen, M.V.M. (2010). Complete enumeration of pure-level and mixed-level orthogonal 

arrays. Journal of Combinatorial Designs 18, 123-140. 
Stufken, J. and Tang, B. (2007). Complete enumeration of two-level orthogonal arrays of strength d with d + 2 constraints. 

Annals of Statistics 35, 793-814. 
Taguchi, G. (1987). System of Experimental Design, Vol. 1 and 2. Unipub/Kraus, White Plains, New York. 
Wu, C.F.J. and Hamada, M. (2009, 2nd ed.). Experiments. Planning, Analysis and Optimization. Wiley, New York. 
Wu, C.F.J. and Zhang, R. (1993). Minimum aberration designs with 2-level and 4-level factors. Biometrika  80, 203-209. 
Xu, H., Cheng, S.-W. and Wu, C.F.J. (2004). Optimal Projective Three-Level Designs for Factor Screening and Interaction 

Detection. Technometrics 46, 280-292. 
Xu, H. and Deng, L.Y. (2005). Moment Aberration Projection for Nonregular Fractional Factorial Designs. Technometrics 

47, 121-131.  
Xu, H. and Wu, C.F.J. (2001). Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs. Annals of 

Statistics 29, 1066-1077. 


	Abstract
	1. Introduction
	2. Basic definitions and results
	2.1. Resolution, GWLP and GMA
	2.2. Projection frequencies 
	2.3. Minimum projection aberration
	2.4. The case for modifications to PFTs for mixed level designs
	2.5. Wu and Zhang (1993)
	3. The new criteria 
	3.1. Average R2 frequency tables (ARFTs)
	3.2. Squared canonical correlation frequency tables (SCFTs)
	3.3. Projection average R2 frequency tables (PARFTs)
	3.4. Examples
	4. Applications
	4.1. Ranking recommendations
	4.2. Detection of non-equivalence
	5. Discussion
	Acknowledgements
	References

