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Relative projection frequency tables for orthogonal arrays 
 
Ulrike Grömping, Beuth University of Applied Sciences Berlin 
 

Abstract 
Projection frequency tables provide detailed information on the confounding 
structure of an orthogonal array: they tabulate the frequency distribution of the 
numbers of (generalized) words of length 3 for all projections onto three factors 
(or length 4 for 4-factor projections or …). This article introduces relative 
projection frequency tables, which are more suitable than their absolute 
counterparts for assessing the severity of confounding in mixed level orthogonal 
arrays. Together with two scalar criteria derived from them, relative projection 
frequency tables can be used for implementing the newly-proposed relative 
projection aberration criterion, which ranks mixed level designs w.r.t. suitability for 
screening experiments.  
 

1. Introduction 
This article is devoted to general orthogonal arrays (OAs), including the mixed level situation. 
Considerations will be limited to arrays for qualitative factors, i.e. the factor levels are 
considered as unordered. Xu, Phoa and Wong (2009) gave an excellent overview over the 
state of the art regarding general OAs. The main purpose of the present article is to provide 
instruments – relative projection frequency tables and relative projection aberration – that are 
usable for assessing suitability of mixed level OAs for screening experiments. It will be 
demonstrated that the relative considerations add an important aspect over and above the 
known concepts of (absolute) projection frequency tables (Xu, Cheng and Wu 2004; cf. also 
next section).  

An nxk array in n runs (=rows) and k factors (=columns) is an OA, if for each pair of 
columns each combination of entries occurs equally often. This imposes constraints on the 
possible combinations of n and k, depending on the numbers of levels of each of the 
k factors. In line with Hedayat, Sloane and Stufken (1999), OAs with all factors at the same 
number of levels will be called fixed level OAs, while OAs with factors at different numbers of 
levels will be called mixed level OAs.  

Fixed level OAs with 2 levels for each factor are widely spread; these are based on 
regular or non-regular orthogonal fractional factorial 2-level designs. In many applications, 
there is a need for more than two levels in some factors, even at the screening stage of 
experimentation. For example, different materials or different geometries might be of interest, 
and there might be three or four of them that are considered worth to be included into an 
initial experiment. This article mainly investigates OAs of resolution III or IV, where 
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resolution III implies that main effects and 2-factor interactions can be fully or partially 
confounded with each other, while resolution IV implies that main effects and 2-factor 
interactions are orthogonal to each other, but 2-factor interactions may be fully or partially 
confounded with each other. This concept is well-known for 2-level arrays and is completely 
analogous for mixed level arrays; for the connection to the strength of an OA, cf. Section 2.  

Support for mixed level experiments in statistical software is limited. A few well-
researched mixed level OAs like the Taguchi L18 (cf. e.g. NIST/Sematech 2010, section 
5.3.3.10) are widely available, for example in Minitab software (Minitab Inc., 2009) or the 
SAS ADX graphical user interface, which is part of the SAS/QC software (SAS Institute Inc. 
2010). A SAS macro suite (Kuhfeld 2009) offers a larger catalogue of general OAs; this suite, 
like most other implementations of mixed level OAs in software, does not control the 
statistical properties of the designs it generates, apart from orthogonality of main effects. If 
mixed level OAs are covered, software usually contains a few arrays with many columns, 
from which some columns are selected for any particular experiment; this selection is usually 
not guided by any quality criteria for the design. The research reported here is targeted at 
improving creation of tailor-made orthogonal arrays in statistical software. The immediate 
purpose of developing relative projection frequency tables has been to guide selection of 
columns from a given array for a particular experiment. Automatic creation of arrays in 
software would also greatly benefit from a more general approach of providing criteria that 
enable selection of additional OAs for inclusion into the software.  

The purpose of relative projection frequency tables as proposed in this article is to 
provide detailed information about a design’s aliasing structure. The extent of complete 
aliasing of main effects with 2-factor interactions (2fis) in resolution III designs or the extent 
of complete aliasing of 2fis with each other in resolution IV designs are of particular interest 
for screening experiments. For illustrating the meaning of “complete aliasing”, Figures 1 
and 2 present mosaic plots, as introduced by Hartigan and Kleiner (1981). A mosaic plot is 
very helpful for visualizing the aliasing structure of 3-factor or at most 4-factor projections: 
The rectangles correspond to the proportions of level combinations; the mosaic plot for a full 
factorial would look similar to Figure 2 (c), but with equally-sized rectangles. Figure 1 
illustrates complete aliasing for fixed and mixed level arrays: Plot (a) shows three completely 
aliased 4-level factors, for which the level combination of any pair of factors completely 
determines the level of the third factor. The other two mosaic plots show a design with two 
4-level factors and one 2-level factor ((b)) or one 4-level factor and two 2-level factors ((c)). In 
plot (b), the 2-level factor is completely determined by the level combination of the two 4-
level factors, while the combination of any one 4-level factor with the 2-level factor does not 
completely determine the other 4-level factor. In plot (c), each 2-level factor is determined by 
the level combination of the 4-level factor and the other 2-level factor, but the 4-level factor is 
not completely determined by the combination of the 2-level factors. All three graphs depict 
the most severe aliasing possible within an OA for the respective combination of factor 



levels. Figure 2 shows mosaic plots for partially aliased OAs for the setups shown in 
Figure 1. Clearly, these OAs are not perfectly balanced, but they are less aliased than the 
ones in Figure 1. The degree of partial aliasing differs: plot (a) shows many level 
combinations that do not occur at all; in plot (b) a few level combinations do not occur at all, 
but most occur at least once; plot (c) shows all level combinations at least once.  

 

      
(a)                                              (b)                                             (c) 
Figure 1: Mosaic plots for three completely aliased situations   

 

   
(a)                                              (b)                                             (c) 

Figure 2: Mosaic plots for three partially aliased situations   
 

For assessing the severity of aliasing of main effects with 2fis for a particular OA, it is helpful 
to consider projections of the OA onto any triple of factors – i.e. to investigate the OA after 
reduction to just the three factors under consideration. Triples with complete aliasing, as 
depicted in Figure 1, bear a strong risk that an existing 2fi severely biases conclusions on 
main effects. If possible, this type of aliasing should be avoided in a screening design. The 
impact of partial aliasing on conclusions for main effects depends on the severity; it is of 
course desirable to also keep aliasing severity as low as possible.  

5 

Projection frequency tables (PFTs) provided in the literature (Xu, Cheng and Wu 2004; 
cf. also next section) generally allow an assessment of the number of projections that are 
replicates of full factorial designs, even for mixed level arrays. Their proposed modification 
into relative projection frequency tables (RPFTs) will help distinguishing complete aliasing 
from partial aliasing in mixed level arrays. RPFTs also allow a limited assessment of the 
severity of partial aliasing. RPFTs for 3-factor projections can thus be used for selecting OAs 
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with as little bias risk as possible from confounding of main effects with 2fis. It is also 
possible and relevant to consider RPFTs based on 4-factor projections for designs with 
resolution IV – such designs are also run as screening experiments, if a larger experiment 
can be afforded but no assumptions on functional form or active interactions are made in 
advance. This article proposes two scalar metrics in addition to RPFTs: The total amount of 
aliasing will be measured by the proposed scalar metrics rA3 or rA4 (or in general rAR for a 
resolution R design). The worst-case aliasing and herewith the distance from complete 
aliasing for the worst-case triple or quadruple of factors will be reflected in the proposed 
scalar metric GR, which is a generalization of generalized resolution by Deng and Tang 
(1999) to mixed level arrays.  

The consideration of orthogonal arrays and their properties may appear obsolete to 
advocates of D-optimal (or other letter-optimal) designs who might argue that users simply 
have to specify their model and will receive an optimal design, which will be orthogonal if 
possible in the specified number of runs. However, especially in screening situations, 
assuming a model is often not reasonably possible. When assuming a pure main effects 
model, the D-optimal design will indeed be an orthogonal main effects array, if the number of 
runs permits. However, D-optimality is not at all influenced by the performance of an OA in 
terms of behavior of 3-factor projections, i.e. the outcome of a D-optimization is a matter of 
luck in terms of bias risk. The benefits of using an orthogonal array with reasonable quality 
criteria, especially for screening, lie in model robustness of the design and further usability of 
its outcomes if it turns out that only a few of the original factors are of relevance. If 
orthogonality is desired – which has e.g. been argued for by Kuhfeld and Tobias (2005) – D-
optimization is not able to provide the most suitable design in terms of screening properties.  

The next section will combine the formalization of the basic concepts underlying this 
article’s results with a review of the literature related to assessing confounding structures of 
mixed level OAs. Section 3 will motivate RPFTs by looking at the established assessments 
for screening properties in case of 2-level arrays. Section 4.1 will derive the worst-case 
number of absolute words; technical details of the derivation are deferred to the Appendix. 
Based on this result, Section 4.2 will develop and exemplify RPFTs and will introduce the 
scalar metric rAR, which denotes the total number of relative words of length R. Section 4.3 
will use RPFTs for introducing a second scalar metric, the afore-mentioned version of 
generalized resolution (GR) for mixed level OAs. This GR also provides a necessary 
condition for projectivity in the sense of Box and Tyssedal (1996). Section 4.4 will introduce 
and discuss relative projection aberration. Finally, Section 5 will discuss the limitations of the 
results, relations to other concepts, needs for further research and implications for statistical 
software. 



2. Setting the scene 
Consider an OA in n runs and k factors with the j-th factor at sj levels, j = 1,…, k. 

W.l.o.g., it is assumed throughout this article that s1 ≤ s2 ≤ … ≤ sk. An OA is also denoted as 
OA(n, l1k1…lmkm), with k = k1+…+km and kj of the factors at lj levels, where l1 ≤ … ≤ lm denote 
the distinct numbers of levels. The degrees of freedom (df) for each factor’s main effect are 
one less than the factor’s number of levels, and the total main effects df amount to  

kslk
k

j
j

m

j
jj −=− ∑∑

== 11
)1( . (1) 

All OAs are balanced in the sense that each column contains each number of levels the 
same number of times, and each pair of columns contains each pair of levels the same 
number of times. If each group of c columns of the OA contains each level combination the 
same number of times, the OA is said to be of strength c. In the statistical literature, 
resolution is a common equivalent expression: an OA of strength c has resolution c+1, where 
resolution is usually denoted by a roman numeral. For example, a strength 3 OA has 
resolution IV and contains each triple of levels the same number of times for each triple of 
factors; this implies the afore-mentioned fact that main effects and 2fis cannot be confounded 
with each other.  

2.1. GWLP and generalized minimum aberration 

In a seminal paper, Xu and Wu (2001) introduced the generalized word length pattern 
(GWLP) and the concept of generalized minimum aberration. These will be introduced in 
detail shortly. For regular fractional factorial designs, the GWLP coincides with the more well-
known word length pattern (WLP, cf. e.g. Mee 2009, Section 5.2), for which all entries are 
integers. The entries of GWLP can also take non-integer values. For introducing GWLP, it is 
necessary to look at the model matrix M of a full model with all interactions up to the highest 
possible degree included. In the literature on generalized minimum aberration, it has become 
customary to divide M into portions according to the degree of interactions, i.e. 
 M = (M0, M1, M2,…, Mk), (2) 
where M0 is the column of ones for the constant, M1 holds all the main effects columns (i.e. 
its number of columns is given by (1)), M2 contains the columns for the 2fis, and so forth, until 
Mk contains the columns for the interaction among all k factors. The columns of M2 are the 
pair wise products between columns of M1 that do not belong to the same factor, the columns 
for higher order interactions are analogously defined as products of appropriate triples of 
columns of M1, and so forth. The specifics of M depend on the coding of experimental 
factors, i.e. on the chosen contrasts, and Xu and Wu (2001) laid out requirements for 
contrast specification. In this article, these are fulfilled by coding factors in normalized 
Helmert contrasts, which are proportional to orthonormal Helmert contrasts. The coding of 
the s−1 columns for an s-level factor (s ≥ 2) in M1 is given as  
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The thus-obtained normalized Helmert contrasts for 2, 3 and 4 levels are shown in Table 1. 
The multiplier s  in each element of (3) ensures compatibility with Xu and Wu’s (2001) 

version of contrast normalization: the Euclidean norm of each main effects column of the 
model matrix for an n run design with balanced individual columns thus becomes n . This 

normalization is particularly important for mixed level designs, for which the usual 
orthonormal Helmert contrasts would yield different Euclidean norms for model matrix 
columns of factors at different numbers of levels.  
 

Table 1: Normalized Helmert contrasts for factors in 2, 3, and 4 levels 

2 levels 3 levels 4 levels
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In the following, the model matrix M will be used for defining the so-called J-characteristics 
and GWLPs. Subsequently, the GWLPs will be broken down into more detail in a notation 
closer to statistical modeling conventions. The J-characteristics can be written as the 
absolute column sums of M, i.e. J = |11×nM| is the row vector of all J-characteristics, as 
introduced by Deng and Tang (1999) for 2-level factors, and named J-characteristics by 
Tang and Deng (1999). Ai and Zhang (2004) generalized the concept to general OAs. Of 
course, the J-characteristics depend on the particular coding chosen for the factors. When 
only looking at the portion of the J-characteristics for a particular degree of interaction, we 
will e.g. denote J3 = |11×nM3| for the row vector of J-characteristics relating to 3fis, or 
abbreviate these as J3-characteristics.  

GWLP = (A3, A4, …, Ak) is the vector of numbers of generalized words of lengths 3 to k. 
The entries of GWLP can be determined from the J-characteristics: Af = JfJf

T/n2 = 
11×nMfMf

T1n×1/n2,  i.e. e.g. A3 = J3J3
T/n2 = 11×nM3M3

T1n×1/n2. Thus, A3 can be expressed as the 
sum of squares of the column sums of M3, divided by n2. It is straightforward to verify that this 
yields the usual WLP for regular fractional factorial 2-level designs. Xu and Wu (2001) 
showed that the Af are independent of the factor coding, as long as the effect columns are 
orthogonal to the intercept column and all main effects model matrix columns are normalized 
to sum of squares n. Thus, the normalized Helmert contrasts (3) have been chosen for 
convenience, but the results also hold for any other appropriately normalized contrasts that 
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follow Xu and Wu’s instructions. GWLP, like WLP, is directly related to the strength and 
resolution of an OA: resolution is the smallest word length that occurs with a positive 
frequency. For example, if A3>0, resolution is III; for A3=0 but A4>0, resolution is IV, and so 
forth. The resolution of an array will be denoted by R in the following. As mentioned before, 
the strength of the array is one less than the resolution, i.e. the strength is the largest word 
length that occurs with zero frequency. Note that resolution is quite different from generalized 
resolution, which was introduced by Deng and Tang (1999) for non-regular orthogonal arrays 
with 2-level factors, as  

GR  = R + 1 – ⎟
⎠
⎞⎜

⎝
⎛

n
RJmax . (4) 

The purpose of generalized resolution is to indicate, how much the most severely aliased R 
factor projection of the design deviates from complete aliasing. This concept will also prove 
useful for mixed level arrays and will be discussed in detail in Sections 3 and 4.3 of this 
article.  

OAs of the same (generalized) resolution can be ranked based on the GWLP according 
to the (generalized) minimum aberration approach: as proposed by Xu and Wu (2001), the 
overall best (=generalized minimum aberration) array is the array with highest resolution and 
fewest shortest (generalized) words. This is completely analogous to the widespread 
minimum aberration criterion for regular fractional factorial designs. Projection aberration 
(next section) refines the generalized aberration criterion; the relative projection aberration 
proposed in this article (cf. Section 4) will reduce the relative weight assigned to interactions 
among factors with many levels vs. interactions among factors with few levels. 

2.2. Projection frequency tables and projection aberration 

Projection frequencies as proposed by Xu, Cheng and Wu (2004) split the GWLP into more 
detailed information: these authors determined separate A3 values for all projections of a 
design onto a triple of factors. They called these the “projected A3 values” and their counts 
the “projection frequencies”. Here, the combination of the projected A3 values with their 
counts is called the projection frequency table, abbreviated as PFT and more specifically 
denoted as PFT3, if restricted to 3-factor projections. Xu, Cheng and Wu proposed to 
successively minimize the number of projections with worst-case A3 values and called this 
criterion the “projection aberration criterion”. For example, Table 2 shows PFT3 for three non-
isomorphic 18 run arrays (the third of which is the well-known Taguchi L18), which Schoen 
(2009) ranked according to this criterion: All three arrays have one 3-factor projection with 
three 3-level factors and complete aliasing. They differ in the number of second-worst 3-
factor projections with one generalized word of length 3 and are therefore ranked as shown 
in the table. 
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Table 2: PFT3 for the three OA(18,2137) of Schoen (2009) 

a3(u,v,w) 0 4/9 ½ 2/3 1 2  A3 

first 9 9 16 21 0 1  28 
second 10 6 20 17 2 1  28 

third 12 0 28 9 6 1  28 

 
In the following, frequency tables for generalized words of length f  for projections onto 
f  factors, called PFTfs, are formally derived, in preparation for introducing relative projection 
frequency tables. The case f=3 is most important; nevertheless, f=4 and larger f are also 
covered. The main effects model matrix M1 consists of k individual model matrices X1, …, Xk 
with sj−1 columns for the j-th matrix. Analogously, each portion of M with a higher index than 
1 can be subdivided into columns that belong to particular factorial interaction effects. 
Notationally, we will in the following consider the u-th, v-th and w-th factor, for 4fis in addition 
the t-th factor, u<v<w<t; remember that su ≤ sv ≤ sw (≤ st). Let Xu and Xv denote the main 
effects matrix of the u-th and v-th factor, Xuv the matrix for the 2fi between the u-th and v-th 
factor, Xuvw the matrix for the 3fi between the u-th, v-th and w-th factor. Then, M2 consists of 
the matrices Xuv for all pairs (u,v), M3 of the matrices Xuvw for all triples (u,v,w), and so forth. 
Obviously, A3 = 11×nM3M3

T1n×1/n2 can be split into summands relating to individual triples of 
factors. If the projected A3 value for the projection onto the u-th, v-th and w-th factor is 
denoted as  

a3(u,v,w) = 11×nXuvwXuvw
T1n×1/n2,  (5) 

we obtain  

∑ ∑ ∑
−

=

−

+= +=
=
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PFT3 is the frequency table of the  individual a3(u,v,w). Analogously, for 4 factors, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
k

defining Xuvwt as the model matrix of the 4fi for the u-th, v-th, w-th and t-th factor, 
a4(u,v,w,t) = 11×nXuvwtXuvwt

T1n×1/n2 is the projected A4 value for the projection onto these four 
factors, A4 is the sum over all quadruples (u,v,w,t) of the a4(u,v,w,t), and PFT4 is the 

frequency table of the  individual a4(u,v,w,t). Generally, PFTf  refers to the frequency table 

of length f generalized words for projections onto f  factors. Thus, PFTf  is a more detailed 
version of Af. Note that the PFTs are related to Deng and Tang’s (1999) confounding 
frequency vectors for fixed 2-level arrays, and Deng and Tang’s “minimum G aberration” 
criterion is equivalent to the projection aberration criterion. Tang and Deng (1999) proposed 
a simplified “minimum G2 aberration” criterion, which Xu and Wu (2001) showed to be a 
special case of generalized minimum aberration.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
k

As was mentioned before, the most important PFT is PFT3. For fixed level OAs of s level 
factors, PFT3 directly reveals how many 3-factor projections are completely aliased and thus 
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bear the risk of biasing main effects by 2fis: as will be shown in Section 4.1, the number of 
completely aliased 3-factor projections is the number of 3-factor projections with s−1 
(generalized) words of length 3. For mixed-level OAs, PFTs are not as easily interpretable, 
as the number of generalized words of length 3 that corresponds to complete aliasing of 3-
factor projections depends on the numbers of levels for each of the 3 factors. This is the 
reason for proposing relative PFTs for mixed level arrays. These will be introduced in 
Section 4. 

3. Usefulness of PFTs for screening properties of 2level arrays 
If all factors have 2 levels in a regular array, there are only two possibilities for the u-th, v-th 
and w-th factor: either the design confounds the main effect of the u-th factor with the 2fi of 
the v-th and w-th factor, in which case Xuvw is a constant column of “+1” only or “–1” only 
entries; or there is no aliasing for these three factors, in which case Xuvw is a column with half 
the entries “+1” and half the entries “–1”. Hence, a3(u,v,w) can be either 1 or 0, and PFT3 
delivers the counts of triples being completely aliased or not aliased at all. For non-regular 
fixed level arrays with 2-level factors, a single length 3 word can be distributed over several 
projections onto three factors. Table 3 provides an example: the regular fractional factorial 
array for 14 factors in 16 runs is compared to the irregular 16 run array for 14 2-level factors, 
which was proposed in Box and Tyssedal (2001) based on projectivity considerations as well 
as in Deng and Tang (2002) based on minimum G aberration. Both arrays have 
A3=28 (generalized) words of length 3. Table 3 shows that the regular array distributes its A3 
words over 28 fully-aliased 3-factor projections, keeping all other 3-factor projections 
unaliased, while the non-regular array more evenly distributes the A3 words: 112 of the 364 
3-factor projections are affected by partial aliasing.  

 
Table 3: PFT3 for the regular and non-regular 16 run array for 14 factors 

a3(u,v,w) 0 0.25 1  A3 

Regular array 336 0 28  28 
Non-regular array 252 112 0  28 

 
The example of Table 3 illustrates the idea of using PFT3 as a tool for assessing suitability of 
an array for screening purposes. The regular array has 28 completely aliased 3-factor 
projections with the full risk that 2fis bias conclusions on main effects. The non-regular array 
has partially aliased 3-factor projections only with less severe individual bias risks (but – of 
course – more of those). Apart from the bias risk, it is a further advantage of the non-regular 
array that all projections onto triples of factors would be able to separate main effects from 
2fis in a subsequent analysis, should a main effects analysis point to the particular triple of 
factors as being important.  



For fixed level arrays with 2-level factors, Deng and Tang (1999) proposed the scalar 
criterion GR, which was already introduced in (4). Their idea was to increase the resolution R 
by the deviation of worst case aliasing among R factors from 100%. For example, in a 
resolution III design, if any 3-factor projection is completely aliased, generalized resolution is 
3. If, however, the worst case aliasing is partial only, generalized resolution is larger than 3: 
the baseline 3 is increased by the gap between worst case aliasing in the design and 1, 
where worst case aliasing is measured in terms of the maximum of the normalized J-
characteristics. In the notation of this article, (4) can be expressed as  

GR = R + 1 – ( )( )RRkcc ccaR ,...,max 1},...,1{},...,{ 1 ⊂ , (7) 

where R is the resolution of the design, c1<…<cR are indices of R distinct design columns, 
and aR(c1,…,cR) is the number of generalized words of length R for the projection onto the R 
factors indexed by these indices. It is important to note that (7) is only valid for 2-level arrays. 
Absence of complete aliasing is directly visible from GR. For example, the non-regular array 
of Table 3 has GR = 3.5, because its worst-case number of length 3 words is 0.25, which is 
the square of 0.5; the corresponding regular array has generalized resolution 3 only, 
because the largest a3 is 1. For designs with resolution R (= strength R−1), projections onto 
R−1 factors are (replicated) full factorials. For designs in 2-level factors, Deng and Tang 
(1999, their proposition 2) showed that a non-integer GR > R implies that a projection onto R 
factors contains at least n(GR−R)/(2R) full factorials in the R factors plus the remaining runs 
as replicates of half-fractions. Thus, for 2-level factors, GR > R implies projectivity R in terms 
of Box and Tyssedal (1996). 

This section used PFTs in absolute terms for 2-level designs; as each factorial effect has 
only one df in this situation, PFTf contains equivalent information to a table of normalized Jf-
characteristics. This is not true if any factors have more than 2 levels, since several Jf- 
characteristics are related to one factorial effect in that case. 

4. RPFTs and relative projection aberration 
In the previous section, PFTs have been used for assessing the suitability of a 2-level 

array for screening. Apart from generalized resolution, the concepts carry over easily to fixed 
level arrays at s > 2 levels, as all 3-factor projections are comparable to each other in terms 
of the numbers of levels of their factors.  

Projection aberration as proposed by Xu, Cheng and Wu (2004) sequentially minimizes 
the frequency of projections with the worst case number of shortest (generalized) words. For 
mixed level arrays, if interest is in ensuring absence of complete aliasing, it is not generally 
adequate to compare unadjusted frequencies between projections onto f  factors, because 
the number of length f words associated with complete aliasing depends on the pattern of 
numbers of levels. For example, one word of length 3 implies complete aliasing for three 2-
level factors, but is different from complete aliasing for three 3-level factors. If an array 
contains various 2-level and 3-level factors, some projections with one word of length 3 may 
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be completely aliased while others are only partially aliased. For RPFTRs, the number of 
words of length R for each projection onto R factors is normalized such that 1=100% 
corresponds to complete aliasing. It is proposed to select screening arrays using the “relative 
projection aberration” criterion based on RPFTR, i.e. to sequentially minimize the frequency 
of projections with the worst case relative numbers of shortest (generalized) words. This 
procedure should be applied after selecting an appropriate design according to the scalar 
criteria that will be proposed below. with the overall lowest number of relative words 
Furthermore, RPFTs can also be used for obtaining a generalization of (7). 

4.1. The maximum possible number of generalized words 

In order to obtain a relative version of PFT, it is crucial to find appropriate normalizing 
quantities, so that 100% indeed corresponds to complete aliasing for the 3- or 4-factor 
projections at hand. These quantities will be derived in this section for 3-factor projections in 
general, for 4-factor projections in strength 3 (=resolution IV) arrays, and generally for 
R-factor projections in resolution R arrays. The case of projecting onto f > R factors, e.g., 
4-factor projections in resolution III arrays, is less useful, because the most interesting worst-
case aliasing is already captured by the R-factor projections. It is also more complicated to 
identify normalizing quantities for this case; this task is therefore left to future research. The 
result to be derived below is stated here in general terms: For a projection onto R factors with 
indices c1<…<cR, sorted such that sc1≤…≤scR, the worst case reference for the number of 
(generalized) words of length R is wR(c1,…,cR) = sc1 – 1. The result is derived for R = 3 and 
then extended. 

Like in Section 2.2, consider a 3-factor projection of an OA with the model matrices Xu, 
Xv, Xw for the factors’ main effects, su ≤ sv ≤ sw for their numbers of levels, n for the number of 
runs, and ndistinct(u,v,w) for the number of distinct runs of the 3-factor projection; often 
ndistinct(u,v,w) < n. As the array is orthogonal, ndistinct(u,v,w) must be a multiple of susv, susw and svsw, 
i.e. it must be at least the least common multiple (LCM) of these products, which can be both 
larger than or equal to svsw. (Note that no assumptions have been made that any number of 
levels is a prime.) Complete aliasing among three factors is possible, if LCM(susv, susw, svsw) 
= svsw = ndistinct(u,v,w). In this case, the main effect of the u-th factor can be completely aliased 
with the 2fi between the v-th and w-th factor, which happens if and only if the combination of 
levels of the v-th and w-th factor fully determines the level of the u-th factor (cf. e.g. the plots 
in Figure 1). It is shown in the Appendix, that the number of generalized words of length 3 in 
this case is su−1, the df for the main effect of the factor with the fewest levels. This result also 
holds more generally: the worst-case number of generalized words in an R-factor projection 
for a resolution R array is the df of the factor with the fewest levels among the R factors. The 
proof in the appendix is detailed for resolution III arrays and sketched for resolution IV arrays. 
It is straightforward but notationally more complex to generalize it to resolution R. 



The worst case number of words has been derived for cases, where ndistinct(c1,…,cR) is the 
product of the R−1 larger numbers of levels, i.e. ndistinct(c1,…,cR) = sc2…scR. It has been 
mentioned that the worst case is not possible for all situations. For example, with one 4-level 
factor, one 3-level factor and one 2-level factor, i.e. su = 2, sv =3, sw = 4, the above-derived 
worst case would be su–1 = 1. However, an OA requires at least 24 runs, i.e. as many runs 
as a full factorial. The worst allocation of combinations to 24 runs, which is compatible with 
orthogonality, leads to 2/3 generalized length 3 words only – better than the theoretical worst 
case of 1. This practically-attainable worst case OA for su = 2, sv =3, sw = 4 has an aliasing 
behavior (not shown), which is clearly different from complete aliasing. As the purpose for 
deriving a point of reference is to indicate severity of the consequences for experimentation, 
it is considered appropriate to use a reference that reflects complete aliasing even though 
this is not practically attainable under all circumstances.  

4.2. RPFTs and rAR 

For RPFT3, each number a3(u,v,w) of generalized words of length 3 of a particular 3-factor 
projection is divided by its respective worst-case number w3(u,v,w), as derived in the 
previous section. Thus, the relative frequency of generalized words of length 3 in the 
projection onto the u-th, v-th and w-th factor is given as r3(u,v,w) = a3(u,v,w) / w3(u,v,w) 
= a3(u,v,w) / (su–1). Generally, for projections onto the R factors indexed by c1 < c2 < … < cR, 
again ordered with increasing numbers of levels, 

( ) ( ) ( ) ( ) ( )1,...,,...,,...,,..., 11111 −== cRRRRRRRR sccaccwccaccr . (8) 

If interest is in relative rather than absolute projection frequencies, an overall assessment of 
the extent of aliasing in the design can be obtained by obtaining the sum over all rR(c1,…,cR), 
thus obtaining the overall number rAR:  
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Table 4 gives RPFT3 and rA3 for the resolution III 18 run arrays of Table 2. From the absolute 
numbers of generalized words of length 3 in Table 2, it is obvious that the only projection with 
2 generalized words of length 3 must be from three 3-level factors; this is the only 
completely-aliased projection. By comparing Tables 2 and 4, it can be concluded that the 
35 3-factor projections with 0.5, 1 and 2 generalized words of length 3 come from projections 
with 3-level factors only, while the other 21 3-factor projections include the 2-level factor. For 
all three arrays, the overall absolute A3 of 28 reduces to the overall relative rA3 of 17. 
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Table 4: RPFT3s for the 18 run arrays of Table 2 

Relative 0 1/4 1/3 4/9 1/2 2/3 1  rA3 

First 9 16 18 9 0 3 1  17 
Second 10 20 12 6 2 5 1  17 

Third 12 28 0 0 6 9 1  17 

 

4.3. Generalizing generalized resolution 

The example arrays of Table 4 have at least one completely aliased 3-factor projection. 
Table 5 gives two examples of mixed-level arrays without any complete aliasing: In both 
cases, the largest relative number of generalized words of length 3 within any 3-factor 
projection is 2/3. Analogously to generalized resolution for 2-level arrays (cf. (4) and (7)), it 
would be desirable to reflect this improvement over complete aliasing in a version of 
generalized resolution for mixed level OAs. 

Remember the results on GR shown previously: For resolution III 2-level arrays, the 
square roots of the a3(u,v,w) are the normalized J3-characteristics. They can only take values 
between 0 and 1, and GR for the 2-level case is defined based on the maximum absolute 
normalized JR-characteristic with R denoting the resolution of the design (cf. (4) and (7)). In 
general, a3(u,v,w) is the sum of several squared normalized J3-characteristics and can be 
larger than one. Thus, it cannot be used directly for an analogous definition of generalized 
resolution. However, moving from absolute to relative projection frequencies, an ad-hoc 
generalization could base a generalized resolution for general OAs on the maximum square 
root of the r3(u,v,w), which is again guaranteed to be between 0 and 1. While consideration of 
the square root appears natural in the 2-level case because of Deng and Tang’s (1999) 
geometric result for the addition to the resolution (their proposition 2, cf. Section 3), a 
convincing motivation for the general case is lacking so far. Nevertheless, analogy implies 
the following proposal:  
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GR = R + 1 – ( )( )RRkcc R 1},...,1{},...,{ 1 ⊂ ccr ,...,max

( ) 11,...,1 =−

  (10) 

with R the resolution of the design, c1<…<cR indices of R distinct design columns, and 
rR(c1,…,cR) the relative number of (generalized) words of length R of the projection onto the 
R factors indexed by these indices. For 2-level designs, (10) coincides with (7), as the rR() 
and aR() coincide for all R-factor projections. For mixed-level designs, (10) and (7) also 
coincide, whenever there are at most R−1 factors at more than two levels, because this 
implies 1= cRR sccw  for all index sets { c1,…,cR }.  

 



Table 5: Two resolution III mixed level OAs with generalized resolution larger than 3 

PFT3 and RPFT3 for OA(36, 211312), A3=194, rA3=184 
a3(u,v,w) 0 1/9 1/8 1/6 1/2 2/3 7/8  

frequency  855 162 192 417 93 33 16  

r3(u,v,w) 0 1/9 1/8 1/6 1/4 7/16 ½ 2/3
frequency  855 162 192 417 12 16 81 33 

         

PFT3 and RPFT3 for an OA(18, 2136), A3=17, rA3=10.5 
(array 6.1.5 of Schoen 2009, isomorphic to Taguchi L18 without 3rd 3-level column) 

a3(u,v,w) 0 1/2 2/3 1     
frequency  9 14 6 6     

r3(u,v,w) 0 1/4 1/2 2/3     
frequency  9 14 6 6     

 
(10) is a reasonable proposal in the following sense: it yields GR = R if and only if the 

design contains at least one completely aliased projection onto R factors. Thus, GR > R is a 
necessary condition for projectivity R. Applying GR from (10) to the well-known OA(36, 
211312) and a particular OA(18, 2136) (cf. Table 5) yields GR = 3.1835 (= 3/213 −+ ) in both 

cases, i.e. these arrays fulfill the necessary condition for projectivity 3. Note, however, that 
GR > R does not imply projectivity R for general OAs: none of the arrays of Table 5 has 
projectivity 3.  

Another potential way of generalizing Deng and Tang’s (1999) generalized resolution 
would base the assessment on normalized J-characteristics much like in the original 
definition. The resulting definition for GR would directly apply formula (4). However, this 
approach does not lead to a reasonable result, as it can and does happen that GR is larger 
than R even though some 3-factor projections are completely aliased. For example, even the 
completely aliased array of Figure 1 (a) yields a maximum of absolute normalized J3-
characteristics (calculated using normalized Helmert contrasts according to (3)) of about 
0.612, which would imply a generalized resolution of 3.388. This is of course not acceptable, 
as the level of each factor is completely determined by the level combination of the other two 
factors, which is appropriately reflected in the fact that the design has the maximum possible 
number of length 3 words, i.e. su–1 = 3. It is not surprising that the formula based on 
J-characteristics does not easily generalize to mixed level OAs, since J-characteristics are 
known to depend on the actual parameterization of the experimental factors. The 
generalization of GR proposed in (10) appears far more appropriate and returns GR = R = 3 
for all arrays of Figure 1. In comparison, the arrays in Figure 2 have GR = 3.4226 (for (a) and 
(b)) and GR = 3.6667 (for (c)).  

16 

As has been mentioned before, GR > R implies projectivity R for designs with 2-level 
factors only (Deng and Tang, 1999), but not for general OAs. Deng and Tang’s proposition 2 
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makes (7) appear a natural extension of resolution for the 2-level case. A similarly compelling 
rationale has not been found for the general case of (10). Choice of the exact formula in (10) 
therefore appears somewhat arbitrary.  

4.4. Relative projection aberration 

The relative projection aberration criterion ranks designs according to their RPFT. For 
Table 4, the design order, determined by projection aberration (cf. Section 2.2), remains 
unchanged for relative projection aberration: All three arrays have one 3-factor projection 
with complete aliasing. They are ranked based on the numbers of 3-factor projections with 
2/3 relative words of length 3 (3 < 5 < 9).  

For a reasonable implementation of relative projection aberration, note that first and 
foremost, complete aliasing is to be avoided, which can be achieved by maximizing GR. As 
RPFTR is a more detailed version of rAR, it appears natural to continue by selecting the 
design with lowest rAR among the designs with maximum GR. Thus, it is proposed to apply 
relative projection aberration in the following steps:  

Step (a): Find the designs with highest possible GR.  
Step (b): Among these, find the designs with lowest rAR.  
Step (c): Among these, rank according to RPFTR, like in (absolute) projection aberration.  
Step (d): Among these, rank with respect to AR+1, AR+2, and so forth.  

Steps (a) to (c) are all based on RPFTR. Step (d) is not in line with the logic of the relative 
approach. As long as ties have to be broken after application of Step (c), this violation of the 
relative approach cannot be avoided, because there is (currently) no relative metric for 
projections onto more than R factors, as a normalizing quantity has not (yet) been derived. 
The following two examples demonstrate application of relative projection aberration in 
comparison to (absolute) projection aberration. In the first example, step (d) leads to a 
unique choice, in the second it doesn’t. The second example demonstrates the beneficial 
effect of the costly initial GR optimization (rather than just watching out for resolution).  

Table 6 shows a 32 run array, for which PFT3 and RPFT3 are shown in Table 7. A 
computer search for the best (in terms of generalized minimum aberration) allocation of three 
2-level factors and five 4-level factors to columns of this array returned eight designs with 
A3=20 and A4=58. These come in two different variants w.r.t. PFT3 and RPFT3, as shown in 
the first two designs in Table 8. Clearly, (absolute) projection aberration would prefer 
design 1, because it has no 3-factor projection with three generalized length 3 words. 
Applying only step (c) of relative projection aberration to the first two designs of Table 8 
would yield a preference for design 2, because it has 9 instead of 10 completely aliased 3-
factor projections. The complete relative projection aberration approach yields an even better 
design in relative terms: Step (a): There is no column allocation with GR>3, i.e. all 
2520 possible choices of columns are equivalent in terms of GR. Step (b): There are six 
resolution III column allocations with the minimum rA3 of 35/3. Step (c): All six solutions from 
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(b) have the same RPFT3. Step (d): Design 3 from Table 8 minimizes A4 among the six 
solutions (the other five have A4=55).  
 
Table 6: OA(32, 21047) (transposed, columns are the runs, rows the factors) 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
  1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
  1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 
  1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 
  1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 
  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
  1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 
  1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 
  1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 
  1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 
  1 2 3 4 2 1 4 3 4 3 2 1 3 4 1 2 3 4 1 2 4 3 2 1 2 1 4 3 1 2 3 4 
  1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1 
  1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2 4 3 2 1 1 2 3 4 3 4 1 2 2 1 4 3 
  1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2 2 1 4 3 3 4 1 2 
  1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3 4 3 2 1 2 1 4 3 1 2 3 4 3 4 1 2 
  1 2 3 4 3 4 1 2 3 4 1 2 1 2 3 4 2 1 4 3 4 3 2 1 4 3 2 1 2 1 4 3 
  1 1 1 1 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 2 2 2 2 3 3 3 3 1 1 1 1  
The array was created from Kuhfeld’s (2009) parent OA(32, 4881) by expanding the 8-level factor into OA(8, 2441) 
and the first two 4-level factors into OA(4, 23)  each. 

 
Table 7: PFT3 and RPFT3 for the OA(32, 21047) of Table 6 (A3=148, rA3=122) 

PFT3 0 1 3 RPFT3 0 1/3 1
 536 142 2  536 33 111 

 
 

Table 8: PFT3 and RPFT3 for three OA(32, 2345) created from the OA(32, 21047) of Table 6 

no.  selected columns GWLP  PFT3 RPFT3  rA3 

   A3 A4  0 1 3 0 1/3 1  

1  3, 5, 8, 11, 12, 15, 16, 17 20 58 36 20 0 36 10 10  13.33
2  3, 9, 10, 12,13, 14, 15, 17 20 58 38 17 1 38 9 9  12.00
3  1, 3, 4, 13, 14, 15, 16, 17 21 53 38 15 2 38 8 9  11.67

 
 
Table 9: PFT3 and RPFT3 for three OA(18, 2136) created from the Taguchi L18 

no.  

omitted 
3-level 
column  A3 A4  PFT3  rA3  RPFT3  GR 

       0 1/2 2/3 1 2 0 1/4 1/2 2/3 1

1  1st  16 28.5  6 20 9 0 0 11.0 6 20 0 9 0 3.183
2  3rd  17 24.5  9 14 6 6 0 10.5 9 14 6 6 0 3.183
3  7th  17 24.5  9 16 6 3 1 10.5 9 16 3 6 1 3
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For the second example, an 18 run design with one 2-level factor and six 3-level factors is to 
be obtained from the Taguchi L18. There are only seven ways for obtaining such a design, 
by in turn omitting each of the seven 3-level columns from the L18. Among the 12 existing 
non-isomorphic OA(18, 2136) (cf. Schoen 2009, Table IV), only the three presented in Table 9 
can be obtained from the Taguchi L18. These are best, fifth and last in Schoen’s ordering of 
designs according to projection aberration. Design 1 of Table 9 is the generalized minimum 
aberration design and has been obtained by optimizing GWLP among the seven designs; 
design 2 of Table 9 is one of the two isomorphic choices that are obtained by relative 
projection aberration. Design 3 of Table 9 is an instance of the remaining four designs, all 
isomorphic to the worst design from Schoen; it was obtained in an initial naïve try of 
minimizing rA3 and subsequently minimizing A4, which was at first considered as a potentially 
valid and simpler approach than full relative projection aberration. After ending up with 
design 3, this approach was dropped. Comparing the best design in absolute terms 
(design 1) to the best design in relative terms (design 2; also coincides with the 18 run 
design from Table 5), design 2 is better than design 1 in two ways: it confounds only 
26 instead of 29 triples of factors, and the most severe partial confounding occurs less 
frequently (for 6 instead of 9 triples). This change is brought about by a shift of confounding 
from triples involving the 2-level factor to triples of only 3-level factors; the latter contribute a 
larger number to A3 than to rA3, which accounts for the difference.  

 

5. Discussion 
RPFTs and rA have been developed for projections onto R factors, where R is the resolution. 
All projections onto f < R factors have of course 0 (generalized) words of length f. For 
projections onto f > R factors, e.g. 4-factor projections for resolution III designs, the maximum 
conceivable number of words of the respective length has not been derived so that a 
reasonable standardization of PFTf to RPFTf is not possible, and consequently rAf can 
neither be calculated. This limitation is not too severe, since (R)PFTs are by far most 
interesting for projections onto R factors. Nevertheless, it might be interesting to provide an 
analogous scaling for projections onto more than R factors; for example, this might enable 
the introduction of a relative word length pattern, which could then be used to make step (d) 
of the relative projection aberration criterion more consistent with the concept of relative 
consideration (cf. end of Section 4.4). Note that the whole concept of projection aberration 
and relative projection aberration, like also (generalized) minimum aberration, relies on equal 
importance of all effects. If certain factors or interactions are of minor importance, these can 
be intentionally confounded more than others, including complete aliasing. 

This article emphasized screening experiments, and thus mostly concentrated on 
(R)PFT3. Schoen (2010) compared the behavior of D-optimal designs and resolution IV OAs 
for 29 scenarios for which estimation of 2fis was requested. Six of these gave the same 
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design with both approaches, two arrays were not feasible as OAs (full factorial needed). 
Among the 21 remaining cases, Schoen found a clear preference for a resolution IV OA 
(7 cases) or for a D-optimal design (4 cases) or a dependence of the preference on the 
purpose of the experiment (10 cases). Most of Schoen’s example cases have no more than 
three factors at more than 2 levels so that (R)PFT4 and PFT4 coincide. Nevertheless, in 
principle Schoen’s investigation lends support to the usefulness of RPFT4 in addition to 
RPFT3. 

The relation of RPFTs to two other concepts has been presented in the previous section: 
they provide a possibility for generalizing generalized resolution and consequently also a 
necessary condition for projectivity. It would also be interesting to investigate the relation to 
uniformity of an array (cf. e.g. Fang, Ma and Mukerjee 2002). As an ad-hoc idea, one might 
e.g. investigate the variability of the r3(u,v,w) for all triples u<v<w, or their concentration, and 
consider a design the more appropriate for screening, the lower the variability or the 
concentration. The relation of this proposal to uniformity of a design might be a topic of 
interest.  

Wu and Zhang (1993), before the seminal work by Xu and Wu (2001), considered 
regular fractional factorial designs with 2-level and 4-level factors, that can be generated 
from fractional factorial 2-level designs by assigning each 4-level factor to a triple of 2-level 
factors that share a word of length 3. Realizing that the same number of words of a given 
length has different implications for aliasing, depending on how many 4-level factors are 
involved, they proposed to have separate counts for different types of words instead of just 
one version each of A3, A4, … While their idea has some appeal, it adds a lot of complexity 
and is not easily generalizable to general mixed level OAs. Note that RPFTs do not solve Wu 
and Zhang’s (1993) issue: their proposal to differentiate between different types of words in 
the (generalized) word length pattern for designs with 2-level and 4-level factors has been 
investigated for one and two 4-level factors only, in which case RPFT always coincides with 
PFT.  

As was mentioned before, the final goal of this research – from a statistician’s 
perspective – is to achieve increased usability of mixed level OAs with a better 
understanding of the consequences of aliasing. This entails better inclusion of general 
orthogonal arrays into statistical software: as mentioned in the introduction, coverage of OAs 
in commercial software products is limited and could use improvement. For a start, relative 
projection aberration can be applied for column allocation when picking columns from OAs 
available in software, as illustrated in Section 4.4. Furthermore, it would be desirable to have 
software offer a larger range of orthogonal arrays, possibly together with catalogued quality 
information like resolution, generalized resolution, GWLP, PFTR, and/or rAR, RPFTR, and with 
an algorithm that automatically generates a good – perhaps even the best – orthogonal array 
according to a reasonable set of quality criteria. There is still a long way to go until such an 
approach can be put into practice: current efforts into enumerating non-isomorphic OAs yield 
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so many different arrays that even today’s computing power does not allow to implement 
these into routine software. Improvements can perhaps be expected from offline application 
of quality criteria to large catalogues of non-isomorphic OAs; the most promising such arrays 
can then be included into software. Choice of adequate criteria and algorithms for tailoring an 
OA to an experimental situation will eventually ensure choice of a good or even optimal 
orthogonal array. The concepts proposed here are most likely a start rather than the final 
solution. The R-package DoE.base (Grömping 2011) implements all these; it is hoped that 
this implementation stipulates readers to work with the methods which will lead to 
improvements based on practical experiences with the consequences of the various criteria. 
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Appendix 

Situation: The projection onto the u-th, v-th and w-th factor at su ≤ sv ≤ sw levels has  
 ndistinct(u,v,w) = svsw = LCM(susv, susw, svsw) distinct runs.  
 The projection is completely aliased, i.e. the level combination of the v-th and w-th 
 factor completely determines the level of the u-th factor. 
To be shown: a3(u,v,w) = su–1.  
Proof: Orthogonality of the array and the chosen normalized Helmert contrasts imply Xv

TXv = 
n Isv–1, Xw

TXw = n Isw–1, Xv
TXw = 0(sv–1)×(sw–1), and Xvw

TXvw = n I(sv–1)(sw–1). The last identity holds, 
because the projection onto the v-th and w-th factor is a (potentially replicated) full factorial. 
As the levels of the u-th factor are fully determined by the 2fi between the v-th and w-th 
factor, Xu can be written as  
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 Xu = Xvw K (11) 
for a suitable su–1 column matrix K. Due to usage of normalized Helmert contrasts, Xu

TXu = 
nIsu–1, which  together with Xvw

TXvw = n I(sv–1)(sw–1)  implies that KTK = Isu–1.  
According to (5), n2 a3(u,v,w) = 11×nXuvwXuvw

T1n×1. Now, realize that the columns of Xuvw are 
element wise products of the columns in Xu, Xv, Xw, which implies  

 , (12) 
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where indices (i, j) stand for the i-th row and j-th column, respectively. (Note that the 
elements of (12) are the unnormalized signed J-characteristics corresponding to the u,v,w 
interaction.) Exploiting the structure of (12) and the structure of Xvw and inserting (11), 
formula (12) can be rewritten as  
 11×nXuvw = vec(Xu

TXvw) T = vec(KTXvw
TXvw) T = n vec(KT)T, 

where the vec operator stacks the columns of a matrix on top of each other, i.e. generates a 
column vector from all elements of a matrix. This implies  

n2 a3(u,v,w) = 11×nXuvw Xuvw
T1n×1 = n2 vec(KT)Tvec(KT).  

Exploiting the relation vec(ABC) = (CT⊗A)vec(B) for dimensionally suitable matrices A, B, C 
(cf. e.g. Bernstein 2009), choosing A=B=Isu–1 and C=KT yields 
 n2 a3(u,v,w)  = n2 vec(Isu–1)T(KT⊗Isu–1) (K ⊗ Isu–1) vec(Isu–1)  
   = n2 vec(Isu–1)T(KT K⊗Isu–1) vec(Isu–1)  

= n2 vec(Isu–1)Tvec(Isu–1)  
= n2(su–1). 

This proves the assertion. /// 
 
For generalization to the worst case number of (generalized) words in 4-factor projections for 
resolution IV arrays, note that strength 3 = resolution IV implies that the projection onto any 
three factors is a (potentially replicated) full factorial. This implies 

• that the matrix Xvwt for the 3-factor interaction of the v-th, w-th and t-th factor fulfills 
Xvwt

TXvwt = n I(sv–1)(sw–1)(st–1) (again relying on the Helmert contrast coding according to 
(3)),  

• and that ndistinct(u,v,w,t) must be a multiple of susvsw, susvst, suswst, svswst, so that 
LCM(susvsw, susvst, suswst, svswst) ≤ ndistinct(u,v,w,t) ≤ susvswst.   
This makes ndistinct(u,v,w,t)= svswst the worst-case number of runs.   

Complete aliasing implies that the main effect of the u-th factor (su–1 df) is completely 
determined by the 3fi between the v-th, w-th and t-th factor. With exactly the same reasoning 
as for the 3-factor projections, Xu can be written as Xvwt K for a suitable matrix K which 
implies that the number of length 4 words in this setup is a4(u,v,w,t) = su–1, i.e. we have 
again the smallest number of levels reduced by 1. The general resolution R case is 
completely analogous but notationally more complex. 
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