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Creating clear designs: a graph-based algorithm and a 

catalogue of clear compromise plans 
 

Ulrike Grömping, Beuth University of Applied Sciences Berlin, Germany 
 

Abstract 
A graph-based algorithm is proposed for designing experiments such that a pre-

specified set of 2-factor interactions is clear of aliasing with any main effects or two-
factor interactions (clear design). The “clear interaction graphs” used in the algorithm 
are unique for each design and different in nature from the well-known Taguchi linear 
graphs. Based on published catalogues of 2-level fractional factorials, enhanced by 
these graphs, a search algorithm finds an appropriate clear design or declares its non-
existence. The approach is applied to creation of a catalogue of minimum aberration 
clear compromise designs, which is also of interest in its own right. 

 
Key words: clear 2-factor interactions, compromise plan, design of experiment, 

linear graph, clear interaction graph 
 

1. Introduction 
In designed industrial experiments, 2-level fractional factorial plans play an important 
role, since they are both parsimonious in the number of runs and – if designed well – 
allow estimation of effects of interest. In regular 2-level fractional factorial designs, a 
small number of runs is achieved by starting from a full factorial in a few, say m−k,  
factors and assigning k additional factors to interaction columns in this design. This 
generates perfect confounding: The 2m effects of the full model with a constant, the 
main effects and all interactions up to order m can only be estimated as 2m−k sums of 2k 
effects each, i.e. each effect is perfectly confounded with 2k−1 other effects. It is often 
true that interaction effects of more than two factors can be neglected, so that it is not 
considered problematic if an interaction among three or more factors is confounded 
with an effect of interest. Thus, it is customary to call effects “clear”, if they are not 
confounded with main effects or 2-factor interactions (2fis) (cf. e.g. Wu and Chen 
1992).  

There are many ways of assigning m factors to 2m–k runs. The k factors to be added 
to the full factorial in m–k factors generate 2k–1 words (=groups of factors whose 
interaction is perfectly aliased with the overall mean). The length of the shortest word is 
called the resolution of the design and is denoted as a roman numeral. Resolution V 
designs do not confound any main effects or 2fis with each other,  in resolution IV 
designs, 2fis can be confounded with each other, and resolution III designs even 
confound main effects with 2fis.  
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In this article, like in much of the related literature, it is assumed that interactions of 
order higher than two are negligible. Under this assumption, resolution V designs are 
generally considered adequate, if 2fis are to be estimated. However, they are often not 
affordable (16 runs for 5 factors, 32 runs for 6 factors, 64 runs for 7 or 8 factors, 
128 runs for 9 to 11 factors, 256 runs for 12 to 17 factors). As an aside, note that there 
are non-regular fractional factorial plans that allow orthogonal estimation of all main 
effects and two-factor interactions for up to 15 factors in 128 runs or up to 19 factors in 
256 runs (cf. e.g. Mee 2009, Chapter 8.2). These are not covered here.  

Various authors (e.g. Addelman 1962, Wu and Chen 1992, Ke and Tang 2003, Wu 
and Wu 2002, Ke, Tang and Wu 2005) have discussed the possibility of devising 
resolution IV designs such that a pre-specified set of 2fis – called the requirement set 
in the sequel – can be estimated. While it is often assumed that some 2fis are 
negligible, this article will make no such assumption. Instead, the requirement set will 
always contain all main effects and those 2fis which are of special interest, without any 
assumption regarding which 2fis are active. For example, in a robustness experiment 
with the purpose to find settings of so-called control factors such that the so-called 
noise factors have as little impact as possible, interactions between control and noise 
factors may be of special interest, i.e. the requirement set might consist of all main 
effects and these 2fis, without necessarily assuming negligibility of other 2fis. All effects 
from the requirement set are estimable, if they are “clear”, i.e. if they are not 
confounded with any main effect or 2fi, and a design that keeps a requirement set clear 
is called a clear design in the sequel. Clear designs can be of resolution IV, because 
2fis from outside the requirement set need not be clear. This article provides a new 
type of graphs, clear interaction graphs, and an algorithm that uses these for finding 
clear designs.  

Section 2 gives a concise overview of 2-level fractional factorial designs, their 
quality criteria and estimability requirements, and introduces clear compromise plans. 
In Section 3, Taguchi (1988) linear graphs are briefly sketched, and the new “clear 
interaction graphs” (CIGs) are introduced. Section 4 proposes a simple and usually fast 
algorithm for finding clear designs based on design catalogues enriched by the CIGs 
and a subgraph isomorphism search algorithm, while Section 5 presents a catalogue of 
minimum aberration clear compromise designs that has been derived using the 
algorithm of Section 4. Section 6 concludes the article with final remarks.  

 

2. Two-level fractional factorials 

2.1. Regular 2-level fractional factorial designs  
The starting point for a regular 2-level fractional factorial design for m factors is a full 
factorial in 2m-k runs for m-k 2-level factors, the levels for which are denoted as “-1” and 
“+1”. The model matrix of the saturated model for the full factorial is usually denoted in 
the so-called “Yates order”, which is the obvious continuation of the order 1 2 12 3 13 
23 123 …, if 1, 2, 3 … are the m-k base factors of the full factorial. This matrix is called 
the “Yates matrix” in the following. Its columns consist of “-1” and “+1” entries, such 
that columns for interaction effects are obtained as products of the respective main 
effect columns, with base factor 1 a sequence of 2m-k-1 times the pairs -1,+1, base 
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factor 2 a sequence of 2m-k-2 times the quadruples -1,-1,+1,+1, base factor 3 a 
sequence of 2m-k-3 times the octuple -1,-1,-1,-1,+1,+1,+1,+1, and so forth. Orthogonality 
of each pair of effects is easily verified by checking that their scalar product is 0.  

 
Table 1: Generators corresponding to Yates matrix column numbers 

  1  2  3  4 5 6 7 
  A  B  AB  C AC BC ABC 

8  9  10  11  12 13 14 15 
D  AD  BD  ABD  CD ACD BCD ABCD 
16  17  18  19  20 21 22 23 
E  AE  BE  ABE  CE ACE BCE ABCE 
24  25  26  27  28 29 30 31 
DE  ADE  BDE  ABDE CDE ACDE BCDE ABCDE 
32  33  34  35  36 37 38 39 
F  AF  BF  ABF  CF ACF BCF ABCF 
40  41  42  43  44 45 46 47 
DF  ADF  BDF  ABDF CDF ACDF BCDF ABCDF 
48  49  50  51  52 53 54 55 
EF  AEF  BEF  ABEF CEF ACEF BCEF ABCEF 
56  57  58  59  60 61 62 63 

DEF  ADEF  BDEF  ABDEF CDEF ACDEF BCDEF ABCDEF 
64  65  66  67  68 69 70 71 
G  AG  BG  ABG  CG ACG BCG ABCG 
72  73  74  75  76 77 78 79 
DG  ADG  BDG  ABDG CDG ACDG BCDG ABCDG 
80  81  82  83  84 85 86 87 
EG  AEG  BEG  ABEG CEG ACEG BCEG ABCEG 
88  89  90  91  92 93 94 95 

DEG  ADEG  BDEG  ABDEG CDEG ACDEG BCDEG ABCDEG 
96  97  98  99  100 101 102 103 
FG  AFG  BFG  ABFG CFG ACFG BCFG ABCFG 
104  105  106  107  108 109 110 111 
DFG  ADFG  BDFG  ABDFG CDFG ACDFG BCDFG ABCDFG 
112  113  114  115  116 117 118 119 
EFG  AEFG  BEFG  ABEFG CEFG ACEFG BCEFG ABCEFG 
120  121  122  123  124 125 126 127 

DEFG  ADEFG  BDEFG  ABDEFG CDEFG ACDEFG BCDEFG ABCDEFG 
 
 
There are many different ways to assign k additional (generated) factors to the 

columns of a Yates matrix with 2m-k rows. Substantial research has been conducted in 
order to list non-isomorphic regular fractional factorials (cf. e.g. Chen, Sun and Wu 
1993, Xu 2009), where two designs are considered isomorphic, if they can be obtained 
from each other by switching rows or columns or levels within columns. The non-
isomorphic regular fractional factorials for m factors in 2m-k runs are usually denoted as 
m-k.idno with an index number “idno” denoting the different non-isomorphic versions, 
and lower “idno” expressing better performance on some overall quality criterion. The 
most important quality criterion is resolution, and designs of equal resolution are 
ordered w.r.t. the pertinence of the most severe form of aliasing, measured by the so-
called word length pattern, which is the frequency table of word lengths. The relevant 
criterion is called minimum aberration (MA) and makes sure that the number of shortest 
words is minimal (and successively so for the next shortest words in case of ties). The 
design catalogues used in this article are ordered by the MA criterion and listed in 
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terms of Yates matrix column numbers (cf. Table 2 in the appendix). For readers used 
to generator notation, Table 1 translates the Yates matrix column numbers from 
Table 2 to generators, in which the base factors are denoted by capital letters. Note 
that generators can also be directly inferred from the binary representation of the Yates 
matrix column numbers, by using the positions of “1”s from the right as indicators which 
factors interact; for example, the binary representation of 12 is 1100, i.e. the third and 
fourth position from the right imply the interaction CD. 

Another overall quality criterion for resolution IV designs is MaxC2, i.e. 
maximization of the number of clear 2fis. For small designs, MA and MaxC2 often 
coincide (cf. also Wu and Wu 2002). For large designs, however, there are various 
situations for which MaxC2 designs are much worse than MA designs in terms of 
aberration (cf. e.g. Block and Mee 2005). It has been argued that the MA criterion is a 
good surrogate for model robustness criteria (e.g. Cheng, Steinberg and Sun 1999). 
The author agrees with this view. Non-MA MaxC2 designs sacrifice some of the model 
robustness by creating stronger aliasing among the remaining 2fis. Therefore, it is 
recommended to use MA as the general quality criterion, and to consider clear 2fis on 
an as-needed base only, i.e. to only require certain specific 2fis to be clear, if there is a 
particular interest in their estimation. This is exactly the purpose of the CIG-based 
algorithm presented here. 

 

2.2. The role of the requirement set 
If some effects are considered particularly interesting, i.e. make up the requirement set 
for an experiment, this can have different backgrounds. The experimenter may have 
substantial prior knowledge, which allows to assume all effects outside the requirement 
set to be negligible. Creation of experimental plans for such situations have been 
treated by many authors, e.g. Addelman (1962) or Wu and Chen (1992).  

In the authors experience, requirement sets often express the focus of interest 
rather than an assumption of negligibility regarding all effects outside the requirement 
set. In such situations, it is not advisable to lightheartedly make any negligibility 
assumptions, apart from the usual negligibility of higher order effects, which may be 
justifiable. This leads to the need for a clear design, i.e. a design in which the effects 
from the requirement set are neither aliased with any main effects nor with any 2fi. A 
comparison of this “Clear” approach with the approach assuming negligibility of effects 
outside the requirement set – called the “Distinct” approach – is treated in some detail 
in Grömping (2010c). 

If a clear design is appropriate for the research question at hand, apart from this 
clearness request, the experimental plan should be as model robust as possible. 
Following the reasoning of the previous section, the experimental plan should thus be 
MA among the possible clear designs. In other words, the goal is to find the design with 
highest resolution and smallest aberration that is able to clearly accommodate the 
requirement set.  
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2.3. Clear compromise plans 

The m experimental factors are divided into the two groups G1 and G2 with m1 and m2 
factors respectively, m1 + m2 = m. For example, in a robustness experiment, G1 might 
contain control factors and G2 noise factors or vice versa. Four classes of compromise 
plans have been defined, the requirement sets of which contain all 2fis in  

Class 1: G1xG1,  
Class 2: G1xG1 and G2xG2,  
Class 3: G1xG1 and G1xG2 or 
Class 4: G1xG2.  

The first three classes were introduced by Addelman (1962), the fourth by Sun (1993). 
Addelman considered estimability of the specified effects under the assumption that all 
2fis outside the requirement set are negligible. This approach is not pursued here. 
Instead, interest here is in clear compromise plans which have also been investigated 
by Ke, Tang and Wu (2005).  

Ke et al. proved that there are no clear resolution IV compromise plans of class 2. 
For the other three classes, they provided lower bounds for the number of runs for a 
given m1, as well as upper bounds for m1 for a given number of runs. Furthermore, they 
provided a small catalogue of clear compromise plans in 32 and 64 runs for class 3 that 
can also be used for classes 1 and 4 and can in some cases be adapted to special 
needs by moving a factor from group G2 to group G1 or simply by omitting factors 
(their tables 1 and 2). They supplemented this catalogue with a few additional class 4 
clear compromise plans (their table 4). Their catalogues do not make any claims w.r.t. 
quality criteria of the resulting clear compromise plans. Designs that can be obtained 
from their catalogue directly or by moving or deleting the last factor(s) of a group are 
shown in bold italics in the tables of MA clear compromise plans in the appendix. It can 
be seen that almost all their directly catalogued designs are MA, while designs 
obtained by moving or deleting columns can often be improved upon.  

 

3. Clear interaction graphs 
Before introducing the new clear interaction graphs, the well-known Taguchi linear 
graphs (cf. e.g. Taguchi 1988 for an extensive but incomplete listing) are briefly 
summarized: linear graphs indicate maximum estimable models for each design. Each 
main effect is a vertex of the graph; each edge represents a 2fi that is estimable, if all 
2fis not in the graph as well as all higher order interactions are assumed negligible. 
There are several linear graphs for any particular design, corresponding to several 
differently structured requirement sets. Wu and Chen (1992) mentioned the possibility 
to show edges that represent clear 2fis by a special line type.  

For clear designs, as negligibility assumptions for main effects or 2fis are not 
permitted. Thus, a more efficient tool can be used: this article proposes an alternative 
type of graph, the “clear interaction graph” (CIG). There is only one unique CIG for 
each regular 2-level fractional factorial design. Again, the factors themselves are the 
vertices in the graph. The edges are defined by the clear 2fis, i.e. two vertices are 
connected by an edge, if and only if the 2fi of the respective two factors is clear. Thus, 
any resolution V graph has all pairs of vertices connected by edges, while resolution III 
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or IV graphs may or may not have edges. Note that the CIG itself does not reveal 
whether a design is resolution III or IV; usually, resolution III designs should not be 
considered in CIG applications. It will therefore be assumed throughout this article, that 
only resolution IV or higher designs are considered.  

Figure 1 shows two examples of CIGs: the graph for the MA resolution IV design 
9-4.1 in 32 runs and 9 factors indicates that all interactions of the 9th factor with any 
other factor are clear, whereas all interactions of both the 9th and the 5th factor with 
each other and all other factors are clear in the second best design 9-4.2. This implies 
that design 9-4.2 is usable for a class 3 or class 4 clear compromise plan with m1=2 or 
a class 1 clear compromise plan with m1=3. For m1=1 or 2, respectively, the better 
design 9-4.1 can be used. 

                           
Figure 1: Clear interaction graphs for designs 9-4.1 (left) and 9-4.2 (right)  

Vertices are labeled with factor numbers (cf. Table 2 for corresponding Yates matrix column 
numbers). 

 
It is possible to provide CIGs both for an experiment’s requirement set and for all 

catalogued designs. An intended experiment can be accommodated in a particular 
design, if its graph is contained in the designs graph, i.e. if there is a mapping of the 
requirement set graph vertices to the design graph vertices such that all edges in the 
requirement set graph are also present in the design graph. This comparison can be 
made by a subgraph isomorphism algorithm, which is the reason why the problem has 
been cast into graph form in the first place.  

 

4. The proposed algorithm for finding clear designs 
The algorithm requires that a complete catalogue of designs, ordered from best to 
worst, is available. In that case, the task of finding the best (resolution IV) design with 
the required 2fis clear can be solved by looping through the catalogued (resolution IV) 
designs from best to worst, and checking for each design whether the requirement set 
CIG is contained in the design’s CIG.  

Complete catalogues of designs ordered by the MA criterion exist in the literature 
(Chen, Sun and Wu 1993; Xu 2009 and the supplementary website). It would be 
possible to directly base a search algorithm on these published catalogues, calculating 
each design’s CIG as part of the algorithm. However, including the CIGs into the 
catalogue leads to a substantial speed improvement. As CIGs are unique and can be 
represented e.g. by a two-row matrix with a column for each edge, the catalogues can 
easily be extended to include them. This has been done for designs with up to 128 runs 
for the implementation of the algorithm discussed below. The catalogues also contain 
the number of clear 2fis, which can be used to substantially reduce the search space. 
Obviously, once a complete catalogue of designs is available for the search process, 
the algorithm will either return the best possible design – after a successful 
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identification of a subgraph mapping between the experiment graph and the design 
graph – or will exhaust the catalogue without finding a design which leads to the insight 
that there is no possibility to accommodate the requirement set within the catalogued 
designs. In other words, the algorithm is guaranteed to find the best existing design 
among the catalogued designs. The following two subsections illustrate application of 
the algorithm and discuss its implementation in a free open-source software by the 
author.  

Note that the algorithm proposed here is very similar to a proposal made by Wu 
and Chen (1992) on the basis of linear graphs (i.e. making negligibility assumptions for 
effects outside the requirement set). As linear graphs are not unique and there can be 
many such graphs for any moderately-sized design, their proposal is much more 
resource-intensive than the algorithm proposed here. 

 

4.1. A detailed application 
The algorithm is now illustrated in detail, using an example by Ke and Tang (2003): 
Example 1: The 7 experimental factors A:temperature, B:moisture, C:pressure, 
D:thickness, E:time, F:size and G:speed are to be investigated, and the two 
interactions temperature*moisture and moisture*time are of special interest. This 
means that the requirement set consists of all main effects (i.e. a resolution IV design is 
needed) and the 2fis A*B and B*E. This requirement set defines the CIG in Figure 2.  

 
 A E B C

 
D F G

Figure 2: Requirement set CIG for Example 1 
 

The task of assigning the experimental factors to the appropriate factor numbers of a 
suitable design now consists in finding the best possible design in the required number 
of runs for which the graph from Figure 2 is contained in the design’s CIG.  
The algorithm consists of the following two coarse steps: 
1. Select the (next) best (criterion: MA) design that has at least as many clear 2fis as 

needed for the requirement set. If no (further) such design is found, declare 
impossibility of request. 

2. Apply a subgraph isomorphism search algorithm (algorithm by Cordella et al. 2001 
as implemented in Csardi and Nepusz 2006) in order to identify a mapping of 
experiment factors to design factors such that the requirement set is clear. If such a 
subgraph is found, the algorithm returns the solution design. Otherwise go to 
Step 1.  

As a result from the algorithm, the experimenter gains a solution design or the definite 
answer that the request cannot be fulfilled (within the permitted search designs). In the 
latter case, the experimenter has to increase the number of runs.  
 
Example 1, continued: The initial goal is to use a 16 run design. 

Step 1: There is no resolution IV design in 16 runs and 7 factors with at least 
two clear 2fis. The algorithm stops with the message that there is no solution. 

The experimenter restarts the algorithm with run size increased from 16 to 32. 

9 



Step 1 again: The design 7-2.1 is selected as the best design with 2 clear 2fis.  
Step 2: The design 7-2.1 has the CIG shown in Figure 3.   

 
Figure 3: CIG for design 7-2.1 

 
Comparison to the requirement set CIG yields many possible mappings of 
experiment factors to design columns, for example A=1, B=4, C=3, D=5, E=2, 
F=6, G=7 (as returned by the implementation of the algorithm described below). 
With this mapping, factors A to G are allocated to columns 1, 8, 4, 16, 2, 7, 27 
of the 32 run Yates matrix (cf. Table 2).  

If increasing the run size is not feasible, there are of course alternatives: Negligibility 
assumptions on effects outside the requirement set may be introduced, perhaps 
combined with a D-optimality approach, or non-regular orthogonal designs may yield a 
solution (e.g. for 12 to 15 factors in 128 runs or 18 and 19 factors in 256 runs, where 
non-regular resolution V designs exist, as mentioned in the introduction). In this 
example, if it appears adequate to assume negligibility of 2fis outside the requirement 
set, the requirement set can be accommodated in the 16 run MA design 7-3.1 using the 
default order of factors. However, this involves the risk of biased estimates, if the 
negligibility assumption is incorrect. 
 

4.2. Implementation  
The above-described algorithm has been implemented in R-package FrF2 

(Grömping 2007-2010; as part of the open source programming environment R (R 
development core team 2010). The algorithm uses R-package igraph (Csardi and 
Nepusz 2006, based on Cordella 2001) for the subgraph isomorphism checks within 
each iteration. As mentioned before, the published complete catalogues of non-
isomorphic designs by Chen, Sun and Wu (1993, with personal communation by Don 
Sun regarding the resolution IV 64 run designs) and Xu (2009, with his supplement on 
the website for resolution IV 128 run designs up to 24 factors) have been enhanced by 
attaching its CIG and the number of clear 2fis to each design and serve as the basis for 
the search. Complete catalogues for up to 64 runs are part of the software itself. For 
128 runs, the complete catalogue is too large to be included into the software; the 
software contains a few promising designs only (including all the ones needed for the 
MA clear compromise designs catalogued in this article), while the complete CIG-
enhanced catalogue for up to 24 factors is distributed with the separate R package 
FrF2.catlg128 (Grömping 2010b; the package links to the author’s website for the 
24 factor catalogue).  
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5. Complete catalogue of smallest MA clear compromise 
designs 

The CIG-based algorithm of the previous section has been used for creating a 
catalogue of clear compromise designs. Previously-published catalogues of 
compromise designs (Addelman 1962 for distinct designs, Ke et al. 2005 for clear 
designs) gave a small selection of designs for maximum values of m1, together with 
instructions how to obtain further designs from these. Here, complete catalogues of 
clear compromise designs for designs with up to 24 factors in 128 runs are provided. 
These have been created using the algorithm from the previous section. Ke et al.’s 
(2005) bounds have been used for limiting the search for clear compromise plans to 
possible candidate designs.  

The complete catalogue is presented in four tables in the appendix. Table 2 holds 
all base designs with their respective Yates matrix columns. Tables 3, 4 and 5 provide 
the complete listings of resolution IV clear compromise designs of the three classes for 
which such designs exist. These tables indicate, which factors of the respective base 
design belong to G1; Table 2 can be used for translating the column numbers from 
Tables 3 to 5 to Yates matrix columns.  
 

5.1. Usage examples 
Table 4 shows that the smallest MA 16 factor clear compromise plan of class 3 with 
m1=2 can be obtained from the design 16-10.45 in 216-10 = 64 runs using its columns 6 
and 16. According to Table 2, these correspond to Yates matrix columns 32 and 60 for 
the G1 factors and Yates matrix columns 1 2 4 8 16 7 11 13 14 19 21 22 25 26 for G2. 
The design entry is set in bold italics, which indicates that an isomorphic design can 
also be obtained from Ke et al. (2005) by omitting the last G2 factor. The design has 77 
words of length 4, which leads to quite heavy confounding (14 model matrix columns 
hold 6 2fis each, one holds 7 2fis). If a larger design can be afforded and is desired, the 
footnote to Table 4 indicates that the 128 run design 16-9.2 could be used with G1 
columns 4 and 5, which corresponds to Yates matrix columns 8 and 16 for G1 and the 
remaining Yates matrix columns of the design for G2.  

Let us now consider the analogous smallest MA class 1 clear compromise plan with 
16 factors and m1=3: according to Table 3 the MA design is based on the base design 
16-10.8 and uses its columns 6, 13 and 16 for G1, which translates into Yates matrix 
columns 32, 25 and 63. This design has better aberration than the one obtainable from 
Ke et al. (2005). Nevertheless, it is still heavily confounded regarding some 2fis. If a 
128 run design is desired for reducing the degree of confounding, the overall MA 
design 16-9.1 can be used, as it is listed further to the right in the table row for 16 factor 
designs: an MA clear class 1 compromise design in 128 runs for 16 factors with m1=3 
can be obtained from 16-9.1 using its columns 2, 3 and 5 for G1 (i.e. moving one 
column from G1 to G2 from the design with m1=4). Within Tables 3 and 4, it is always 
permitted to move factors from G1 to G2, as was also stated by Ke et al. (2005) for 
their corresponding tables 1 and 2. Beware that this is not true for Table 5, where for 
example the design for 10 factors with m1=4 can be based on the overall MA design 

11 



10-4.1, while m1=3 requires using the design 10-4.3, which has worse aberration (cf. 
also the following section).  
 

5.2. Observations regarding MA clear designs 
The smallest MA designs in most cases require half the run size of a resolution V 
design. In some cases, designs with only a quarter of the runs of a resolution V design 
can also be used. For the latter cases, it may sometimes be desirable to double the run 
size for reducing the severity of confounding. In most such cases, the MA clear design 
can be obtained from the overall MA design in the doubled run size, e.g. from 16-9.1 in 
the class 1 example from the previous section. Often, this design is listed further to the 
right in Tables 3 and 4, in which case the MA column allocation for it can be obtained 
by moving one or more G1 column(s) to G2, as was the case for the class 1 example 
above. Where a larger MA design cannot be obtained in this way (some cases for 
Table 4, and all cases for Table 5), footnotes indicate how to allocate G1 factors, like in 
the class 3 example of the previous section.  

For clear class 4 compromise plans, it is not permitted to move factors between G1 
and G2, which is due to the absence of requirements regarding estimability of 2fis 
within G1. Consequently, there is no monotonicity in terms of m1: for example, the 
overall MA design in 10 factors in 64 runs (10-4.1) can accommodate a clear class 4 
compromise plan for m1=2 or m1=4, but not for m1=3: The design has two non-
overlapping words of length 4. Choosing all m1=4 factors for G1 from the same 4-letter 
word, the design can be used as a clear compromise plan of class 4 for m1=4, since all 
confounding is within G1 and within G2 only. When omitting one of these factors from 
G1, its interaction with the other three becomes important, and the design is not a clear 
class 4 compromise design for m1=3. A G1 with m1=2 factors can again be 
accommodated within this design, because there are two factors (positions 4 and 10) 
that do not occur in the two 4-letter words and thus have all their 2fis clear. 

The designs that can also be obtained from Ke et al. (2005) have been set in bold 
italics in Tables 3 to 5. It can be seen that the larger MA designs catalogued here are in 
most cases better than those obtainable from Ke et al. The difference in aberration can 
sometimes be large, e.g. for a class 1 design with 12 factors and m1=2, where the Ke 
et al. design obtained from their 17 run class 3 design by omitting the last 5 G2 
columns would result in 18 words of length 4, as opposed to only six such words in the 
design catalogued here. For other cases, the difference is slight, for example for the 
class 3 design in 13 factors with m1=2, where the design obtainable from the Ke et al. 
instructions has 26 words of length 4 as compared to 25 such words for the MA design.   

Class 3 compromise plans are also class 4. As the class 3 requirement set is larger, 
the MA clear class 3 compromise plan is of course not necessarily MA for class 4. 
However, class 3 and class 4 MA clear compromise plans often coincide. Deviations 
occur in particular for relatively large values of m1, because – as has been discussed 
above – there may be designs with confounded interactions within both G1 and G2 but 
clear interactions between groups. Class 3 compromise plans are also class 1. 
Alternatively, one can obtain a class 1 compromise plan with m1 increased by one vs. a 
corresponding class 3 plan by moving one factor from G2 to G1. A comparison of 
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Tables 3 and 4 shows that MA clear class 1 compromise plans can often achieve better 
aberration than the corresponding class 3 plans.  
 

6. Final remarks 
Clear interaction graphs (CIGs) have been introduced, and an algorithm based on 
complete catalogues of CIGs has been proposed that is guaranteed to find the best 
existing clear design among the catalogued designs. Section 4.2 details an 
implementation of the algorithm for general use and indicates for which scenarios it has 
been implemented. The software is guaranteed to find the best existing resolution IV 
clear design with up to 64 runs or – if additional catalogues ordered by the MA criterion 
are available, the best existing clear design within those, for example with the 
additional complete catalogues for 128 run resolution IV designs with up to 24 factors 
provided in Grömping (2010b). 

The FrF2 implementation of the algorithm has been used for creating a complete 
catalogue of smallest MA clear compromise designs with up to 128 runs and 
24 factors. This work serves as a demonstration of the usefulness of the CIGs and the 
CIG-based algorithm. On the other hand, the work on the catalogue has also been 
used to improve the software: those base designs that have shown up as yielding MA 
clear compromise designs should be generally useful for finding clear designs, even if 
no perfect compromise design is sought. The 128 run clear compromise plans from the 
catalogue in Tables 3 to 5 are based on 68 different base designs, 30 of which were 
not originally part of the selection of 128 run designs included in the software. They 
have been added to the software, which should also improve the chances for 
automatically finding better designs for general requirement sets. At the very least, the 
thus-enhanced software will automatically find all MA clear compromise designs 
catalogued in this article, without loading the additional complete catalogue of 128 run 
resolution IV designs. 

Finally, apart from the CIGs and the proposed algorithm, the catalogue of clear 
compromise plans is of interest in its own right, as there are practical situations for 
which the experimental factors naturally fall into two groups with a certain pattern of 
2fis being of interest. For example, in the robustness scenario mentioned in the 
introduction, control factors and noise factors are a natural choice for the two groups 
G1 and G2. The interactions between these two groups will be particularly interesting. 
Nevertheless, one may not be willing to assume negligibility of other interactions. In this 
case, a class 4 clear compromise design might be adequate. One may also want to 
estimate interactions among control factors, which will imply a class 3 clear 
compromise design, whenever one is not willing to assume negligibility of the 2fis 
among noise factors. Many other such situations are conceivable. Therefore, the 
catalogue of MA clear compromise designs can be quite useful for practitioners. 
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Appendix: Tables of catalogues 
Table 2: Resolution IV regular* base designs used in at least one clear 
compromise design (from the catalogues by Chen, Sun and Wu 1993 or Xu 2009, a 
personal communication by Don Sun (64 runs) and the web supplement to Xu 2009)  
Design 
m-k.no. 

Runs
2m-k

Column numbers of 
factors 1 to m in Yates matrix 

7-2.1  32 1 2 4 8 16 7 27 
8-3.1 32 1 2 4 8 16 7 11 29 
9-4.1 32 1 2 4 8 16 7 11 19 29 
9-4.2 32 1 2 4 8 16 7 11 13 30 
9-3.1 64 1 2 4 8 16 32 7 27 45 
10-4.1 64 1 2 4 8 16 32 7 27 43 53 
10-4.3 64 1 2 4 8 16 32 7 11 29 51 
11-5.1 64 1 2 4 8 16 32 7 11 29 45 51 
11-5.4 64 1 2 4 8 16 32 7 11 21 46 56 
11-5.6 64 1 2 4 8 16 32 7 11 19 29 62 
12-6.1 64 1 2 4 8 16 32 7 11 29 45 51 62 
12-6.2 64 1 2 4 8 16 32 7 11 21 46 54 56 
12-6.4 64 1 2 4 8 16 32 7 11 21 41 54 56 
12-6.23 64 1 2 4 8 16 32 7 11 21 25 31 45 
12-5.1 128 1 2 4 8 16 32 64 31 103 43 85 121 
13-7.1 64 1 2 4 8 16 32 7 11 21 25 38 58 60 
13-7.3 64 1 2 4 8 16 32 7 11 19 29 37 59 62 
13-7.6 64 1 2 4 8 16 32 7 11 19 30 37 41 52 
13-7.34 64 1 2 4 8 16 32 7 11 13 19 21 25 46 
13-6.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 
13-6.6 128 1 2 4 8 16 32 64 31 103 43 85 44 89 
14-8.1 64 1 2 4 8 16 32 7 11 19 30 37 41 49 60 
14-8.4 64 1 2 4 8 16 32 7 11 19 30 37 41 52 56 
14-8.7 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 
14-8.40 64 1 2 4 8 16 32 7 11 13 14 19 21 25 54 
14-7.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 
14-7.3 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67
14-7.5 128 1 2 4 8 16 32 64 31 103 43 85 44 86 13 
14-7.14 128 1 2 4 8 16 32 64 31 103 43 49 74 62 109
14-7.71 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 
14-7.94 128 1 2 4 8 16 32 64 31 103 43 85 44 89 113 
15-9.3 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 
15-9.9 64 1 2 4 8 16 32 7 11 13 19 21 25 35 37 63 
15-9.40 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 58 
15-8.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 
15-8.3 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 13
15-8.10 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55
15-8.34 128 1 2 4 8 16 32 64 31 103 43 85 44 86 13 97
15-8.78 128 1 2 4 8 16 32 64 31 103 43 49 78 45 62 105
15-8.150 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 
15-8.423 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 
15-8.1221 128 1 2 4 8 16 32 64 31 103 43 85 44 89 113 125 
16-10.2 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 59 
16-10.8 64 1 2 4 8 16 32 7 11 13 14 19 21 25 35 37 63 
16-10.45 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 26 60 
16-9.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 110 
16-9.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 
16-9.80 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 
16-9.890 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 
16-9.1261 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67 70 105 
16-9.1413 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55  
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Table 2, continued 
Design 
m-k.no. 

Runs
2m-k

Column numbers of 
factors 1 to m in Yates matrix* 

16-9.2913 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 
16-9.5539 128 1 2 4 8 16 32 64 31 103 43 85 14 22 13 19 26 
17-11.2 64 1 2 4 8 16 32 7 11 19 29 37 41 47 49 55 59 62 
17-11.7 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 35 37 63 
17-11.6 =  
17-11.38** 64 1 2 4 8 16 32 7 11 13 14 19 21 22 25 26 28 63  

17-10.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 
17-10.1036 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 
17-10.2407 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 
17-10.5846 128 1 2 4 8 16 32 64 31 103 43 85 46 61 67 70 105 108 
17-10.5924 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55 104 
17-10.9040 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 26 
17-10.12633 128 1 2 4 8 16 32 64 31 103 43 85 14 22 13 19 26 28 
18-11.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 121 
18-11.23 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 79 98 
18-11.95 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 116 105 
18-11.5146 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 104 
18-11.6381 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 123 
18-11.14398 128 1 2 4 8 16 32 64 31 103 43 85 46 56 88 79 55 104 112 
18-11.18050 128 1 2 4 8 16 32 64 31 103 43 85 121 13 14 22 19 26 28 
19-12.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 86 
19-12.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 97 
19-12.10 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125  
19-12.488 128 1 2 4 8 16 32 64 31 103 43 85 44 86 25 105 58 106 54 114  
19-12.9648 128 1 2 4 8 16 32 64 31 103 43 85 44 82 57 113 89 105 123 125  
19-12.11319 128 1 2 4 8 16 32 64 31 103 43 81 45 49 118 73 94 56 104 127  
19-12.12482 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 55 56 79 104 112  
19-12.26381 128 1 2 4 8 16 32 64 31 103 43 45 87 46 88 55 56 79 104 112  
20-13.1 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 86 91  
20-13.2 128 1 2 4 8 16 32 64 31 103 43 85 46 61 114 67 78 55 58 97 108  
20-13.11 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104  
20-13.43452 128 1 2 4 8 16 32 64 31 103 43 81 44 93 21 13 19 49 14 25 28  
20-13.47458 128 1 2 4 8 16 32 64 31 103 43 45 87 46 88 55 56 79 104 112 127  
21-14.1 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 25  
21-14.4 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104  
21-14.8 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 113  
21-14.68031 128 1 2 4 8 16 32 64 31 103 43 81 44 93 21 13 19 49 14 25 28 61  
22-15.1 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104 114  
22-15.7 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 78 58 83 97 28 104 112  
22-15.8509 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 61 84 13 67 82 37 62 94  
22-15.118181 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97  
23-16.1 128 1 2 4 8 16 32 64 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112 49  
23-16.8 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 124 114 123 106  
23-16.5532 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 94 14 50 121 100 88 112 21 61  
23-16.172917 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97 46  
24-17.2 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114 
24-17.4 128 1 2 4 8 16 32 64 31 103 43 85 44 86 88 53 38 58 79 83 124 114 123 106 113
24-17.4552 128 1 2 4 8 16 32 64 31 103 43 49 74 124 7 94 14 50 121 100 88 112 21 61 13 
24-17.256531 128 1 2 4 8 16 32 64 63 71 25 104 30 41 78 112 15 49 119 86 23 111 97 46 39  
* There are also non-regular resolution V designs, indicated by footnotes in the following tables. 
These have not been considered for the catalogues. 
** The design is called 17-11.6 in the Chen, Sun and Wu catalogue in the paper, but 17-11.38 in 
the complete enumeration of 64 run resolution IV designs as obtained from the authors 
(personal communication with D.X.Sun). Numbering in the paper reflects some trade-off choices 
by the authors regarding MA and MaxC2 criteria, numbering in the complete listing is strictly in 
terms of MA. 



  

Table 3: Catalogue of smallest MA class 1 clear compromise designs (no entryi: resolution V needed)ii,iii 

Cell entries: design and choice of design columns for G1 
m1 2 3 4 5 6 7 8 9 10

7 factors 7-2.1 7-2.1 7-2.1       
 1 4 1 4 5 1 4 5 7       
8 factors 8-3.1 8-3.1        
 1 5 1 5 8        
9 factors 9-4.1 9-4.2 9-3.1 9-3.1 9-3.1     
 1 9 1 5 9 1 4 5 6 1 4 5 6 8 1 4 5 6 8 9     
10 factors 10-4.1 10-4.1 10-4.1 10-4.3      
 1 4 1 4 5 1 4 5 10 1 5 6 9 10      
11 factors 11-5.1 11-5.1 11-5.4       
 1 5 1 5 11 6 8 9 10       
12 factorsiv 12-6.1 12-6.2 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1  
 1 5 6 8 9 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 10 1 2 3 4 5 6 7 10 11  
13 factorsiv 13-7.1 13-7.6 13-6.1 13-6.1 13-6.1 13-6.1 13-6.6   
 4 6 4 10 13 1 3 5 7 1 3 5 7 8 1 3 5 7 8 9 1 3 5 7 8 9 10 1 2 3 5 7 8 9 10   
14 factorsiv 14-8.1 14-8.7 14-7.1 14-7.1 14-7.3 14-7.3 14-7.94   
 1 10 5 10 13 1 2 4 5 1 2 4 5 7 1 4 5 8 9 11 4 5 7 8 9 11 12 1 2 3 5 7 8 9 10   
15 factorsiv 15-9.3 15-9.9 15-8.1 15-8.1 15-8.34 15-8.1221 15-8.1221   
 1 10 6 12 15 1 4 5 6 1 4 5 6 11 4 5 7 9 10 13 1 2 3 5 7 8 9 1 2 3 5 7 8 9 10   
16 factors 16-10.2 16-10.8 16-9.1 16-9.2 16-9.1261     
 1 10 6 13 16 2 3 5 8 1 4 5 6 11 4 5 7 8 9 11     
17 factors 17-11.2 17-11.7 17-10.1 17-10.1 17-10.5846     
 1 10 6 14 17 1 4 5 8 1 4 5 8 9 4 5 7 8 9 11     
18 factorsv 18-11.1 18-11.1 18-11.23 18-11.95 ? ? ? ? ?
 1 4 1 4 5 2 5 9 10 1 4 5 8 9      
19 factorsv 19-12.1 19-12.2 19-12.488 ? ? ? ? ? ?
 1 4 1 8 9 1 8 9 12       
20 factors 20-13.1 20-13.2 ? ? ? ? ? ? ?
 1 4 4 5 15        
21 factors 21-14.1 21-14.4 ? ? ? ? ? ? ?
 1 2 2 6 17        
22 factors 22-15.1 22-15.7 ? ? ? ? ? ? ?
 1 12 2 6 17        
23 factors 23-16.1 23-16.8 ? ? ? ? ? ? ?
 1 2 2 5 9        
24 factors 24-17.2 24-17.4 ? ? ? ? ? ? ?
 1 12 2 5 9        
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Table 4: Catalogue of smallest MA class 3 clear compromise designs (no entryi: resolution V needed)iii,vi 

Cell entries: design and choice of design columns for G1 
m1 1 2 3 4 5 6 7 8 

7 factors 7-2.1 7-2.1 7-2.1      
 4 4 5 4 5 7      
8 factors 8-3.1 8-3.1       
 5 5 8       
9 factors 9-4.1 9-4.2 9-3.1 9-3.1 9-3.1    
 9 5 9 4 5 6 4 5 6 8 4 5 6 8 9    
10 factors 10-4.1 10-4.1 10-4.3 10-4.3     
 4 4 10 5 6 9 5 6 9 10     
11 factors 11-5.1 11-5.6 11-5.6      
 11 6 10 6 10 11      
12 factorsiv 12-6.4 12-6.23 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1 12-5.1
 11 6 12 2 3 4 2 3 4 5 2 3 4 5 6 2 3 4 5 6 7 2 3 4 5 6 7 10 2 3 4 5 6 7 10 11
13 factorsiv 13-7.3 13-7.34 13-6.1 13-6.1 13-6.1 13-6.6 13-6.6  
 10 6 13 5 7 8 5 7 8 9 5 7 8 9 10 1 2 5 7 8 9 1 2 5 7 8 9 10  
14 factorsiv 14-8.4 14-8.40vii 14-7.5 14-7.71 14-7.94 14-7.94 14-7.94  
 10 6 14 7 9 10 6 7 10 11 1 2 5 7 8 1 2 5 7 8 9 1 2 5 7 8 9 10  
15 factorsiv 15-9.3 15-9.40viii 15-8.150 15-8.423 15-8.1221 15-8.1221 15-8.1221  
 10 6 15 1 8 9 6 7 10 11 1 2 5 7 8 1 2 5 7 8 9 1 2 5 7 8 9 10  
16 factors 16-10.2 16-10.45ix 16-9.890 16-9.2913 16-9.5539    
 10 6 16 1 8 9 6 7 10 11 6 7 9 10 11    
17 factors 17-11.2 17-11.38x 17-10.2407 17-10.9040 17-10.12633    
 10 6 17 1 8 9 6 7 10 11 6 7 9 10 11    
18 factorsv 18-11.1 18-11.1 18-11.6381 18-11.18050 ? ? ? ?
 4 4 5 1 8 9 6 7 10 11     
19 factorsv 19-12.10 19-12.9648 19-12.9648 ? ? ? ? ?
 1 1 8 1 8 9      
20 factors 20-13.11 20-13.43452 ? ? ? ? ? ?
 1 9 10       
21 factors 21-14.8 21-14.68031 ? ? ? ? ? ?
 1 9 10       
22 factors 22-15.8509 22-15.118181 ? ? ? ? ? ?
 10 2 3       
23 factors 23-16.5532 23-16.172917 ? ? ? ? ? ?
 10 2 3       
24 factors 24-17.4552 24-17.256531 ? ? ? ? ? ?
 10 2 3       

 



  

Table 5: Catalogue of smallest MA class 4 clear compromise designs (entry Vi: resolution V needed)iii,xi 
Cell entries: design and choice of design columns for G1 
W.l.o.g., G1 is assumed to be the smaller of the two sets G1 and G2. For larger G1, switch roles of G1 and G2. 

m1 1 2 3 4 5 6 7 8 9 10 
7 factors 7-2.1 7-2.1 7-2.1        
 4 4 5 4 5 7        
8 factors 8-3.1 8-3.1 V V       
 5 5 8         
9 factors 9-4.1 9-4.2xii 9-3.1 9-3.1       
 9 5 9 4 5 6 1 2 3 7       
10 factors 10-4.1 10-4.1 10-4.3 10-4.1 10-4.1      
 4 4 10 5 6 9 1 2 3 7 1 2 3 7 10      
11 factors 11-5.1 11-5.6 11-5.6 11-5.1 11-5.1      
 11 6 10 6 10 11 5 6 9 10 5 6 9 10 11      
12 factorsiv 12-6.4xiii 12-6.23xiii 12-5.1 12-5.1 12-5.1 12-6.1xiii     
 11 6 12 2 3 4 1 8 9 12 1 3 8 9 12 1 2 3 4 7 8     
13 factorsiv 13-7.3xiv 13-7.34xiv 13-6.1 13-6.1 13-6.1 13-6.1     
 10 6 13 5 7 8 1 2 11 13 1 2 5 11 13 1 2 5 7 11 13     
14 factorsiv 14-8.4vii 14-8.40vii 14-7.5 14-7.1 14-7.1 14-7.1 14-7.14    
 10 6 14 7 9 10 1 3 10 12 1 3 4 10 12 1 3 4 5 10 12 1 3 5 6 8 11 13    
15 factorsiv 15-9.3viii 15-9.40viii 15-8.150 15-8.3 15-8.10 15-8.78 15-8.78    
 10 6 15 1 8 9 7 9 11 14 1 2 10 11 13 1 5 6 8 11 14 1 4 5 6 8 11 14    
16 factors 16-10.2ix 16-10.45ix 16-9.890 16-9.80 16-9.80 16-9.1413 V V   
 10 6 16 1 8 9 1 2 11 13 1 2 10 11 13 1 2 3 10 11 12     
17 factors 17-11.2x 17-11.38x 17-10.2407 17-10.1036 17-10.1036 17-10.5924 V V   
 10 6 17 1 8 9 1 2 11 13 1 2 10 11 13 1 2 3 10 11 12     
18 factorsv 18-11.1 18-11.1 18-11.6381 18-11.5146 18-11.5146 18-11.14398 ? ? ?  
 4 4 5 1 8 9 1 2 11 13 1 2 10 11 13 1 2 3 10 11 12     
19 factorsv 19-12.10 19-12.9648 19-12.9648 19-12.11319 19-12.12482 19-12.26381 ? ? ?  
 1 1 8 1 8 9 2 3 10 12 1 2 10 11 13 1 2 3 10 11 13     
20 factors 20-13.11 20-13.43452 ? ? ? 20-13.47458 ? ? ? ? 
 1 9 10    1 2 3 10 11 13     
21 factors 21-14.8 21-14.68031 ? ? ? ? ? ? ? ? 
 1 9 10         
22 factors 22-15.8509 22-15.118181 ? ? ? ? ? ? ? ? 
 10 2 3         
23 factors 23-16.5532 23-16.172917 ? ? ? ? ? ? ? ? 
 10 2 3         
24 factors 24-17.4552 24-17.256531 ? ? ? ? ? ? ? ? 
 10 2 3         
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i Designs with “?” entries require at least 256 runs; the actual run size is unknown (because a 
graph-enhanced complete catalogue of resolution IV 256 run designs is not available). 

ii The actual run size is larger than the Ke et al. (2005) lower bound for the following 
combinations (numbers of factors with G1 sizes in parentheses):  
10 and 11(1), 12(3 to 5), 13(3 to 4), 14(3), 18 to 22(1), 18 (6 to 8), 19 (5 to 7), 20 and 21(4 
to 6), 22 and 23 (4 to 5), 24(4). Whenever the lower bound is 256 and a resolution V design 
is not possible, the actual run size is not known. 

iii Designs in bold italics can also be obtained from the Ke et al. (2005) article (up to 
isomorphism). 

iv For 12 to 15 factors, there is an irregular resolution V design in 128 runs (cf. e.g. Mee 2009, 
Section 8.2). This can of course be used as well.  

v For 18 and 19 factors, there is an irregular resolution V design in 256 runs (cf. e.g. Mee 2009, 
Section 8.2). This can of course be used as well. 

vi The actual run size is larger than the Ke et al. (2005) lower bound for the following 
combinations (numbers of factors with G1 sizes in parentheses):  
8(3), 10 (1 and 5), 11 (1, 4, 5), 12 (3 to 5), 13 (3,4,8), 14 (3 and 8), 15(8), 16 and 17 (6 to 8), 
18 to 22 (1), 18 (5 to 7), 19 (4 to 6), 20 and 21 (3 to 5), 22 (3 and 4). Whenever the lower 
bound is 256 and a resolution V design is not possible, the actual run size is not known. 

vii 14-7.1 would do it with its columns 4 and 5 for G1. 
viii 15-8.1 would do it with its columns 4 and 5 for G1. 
ix 16-9.2 would do it with its columns 4 and 5 for G1. 
x 17-10.1 would do it with its columns 4 and 5 for G1. 
xi The actual run size is larger than the Ke et al. (2005) lower bound for the following 

combinations (numbers of factors with G1 sizes in parentheses):  
10,11(1), 12(3 to 5), 13(3,4), 14(3), 16 to 19 (7+), 18 to 22(1), 20 to 22(3 to 5), 23 to 24 (3 to 
4). Whenever the lower bound is 256 and a resolution V design is not possible, the actual 
run size is not known. 

xii 9-3.1 would do it with its columns 4 and 5 for G1. 
xiii 12-5.1 would do it with its columns 2, 2 3, or 1 3 4 8 9 12 for G1. 
xiv 13-6.1 would do it with its columns 5 and 7 for G1. 
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