Fachbereich II - Mathematik - Physik - Chemie BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

05/2010

Ulrike Grömping

Creating clear designs: a graph-based algorithm and a catalogue of clear compromise plans

Zur Konstruktion unvermengter Versuchspläne: ein graphbasierter Algorithmus und ein Katalog unvermengter Kompromiss-Designs (englischsprachig)

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

The reports are freely available via the Internet:
http://www1.beuth-hochschule.de/FB II/reports/welcome.htm

05/2010, September 2010
© 2010 Ulrike Grömping
Creating clear designs: a graph-based algorithm and a catalogue of clear compromise plans
Zur Konstruktion unvermengter Versuchspläne: ein graph-basierter Algorithmus und ein Katalog unvermengter Kompromiss-Designs (englischsprachig)

Update history

February 13, 2011: typo corrected on page 3 (highlighted in grey)
December 21, 2011: added missing column numbers in six rows of Table 1; added mandatory reference to IIE transactions, where the final peer-reviewed version of this preprint will be published

Editorial notice / Impressum

Published by / Herausgeber:
Fachbereich II
Beuth Hochschule für Technik Berlin
Luxemburger Str. 10
D-13353 Berlin
Internet: http://public.beuth-hochschule.de/FB II/
E-Mail: fbiireports@beuth-hochschule.de

Responsibility for the content rests with the author(s) of the reports. Die inhaltliche Verantwortung liegt bei den Autor/inn/en der Berichte.

ISSN (print): 2190-3913

This is a preprint of an article whose final peer-reviewed version has been accepted for publication in IIE Transactions.
IIE Transactions is available online at http://www.tandfonline.com.

Creating clear designs: a graph-based algorithm and a catalogue of clear compromise plans

Ulrike Grömping, Beuth University of Applied Sciences Berlin, Germany

Abstract

A graph-based algorithm is proposed for designing experiments such that a prespecified set of 2 -factor interactions is clear of aliasing with any main effects or twofactor interactions (clear design). The "clear interaction graphs" used in the algorithm are unique for each design and different in nature from the well-known Taguchi linear graphs. Based on published catalogues of 2-level fractional factorials, enhanced by these graphs, a search algorithm finds an appropriate clear design or declares its nonexistence. The approach is applied to creation of a catalogue of minimum aberration clear compromise designs, which is also of interest in its own right.

Key words: clear 2-factor interactions, compromise plan, design of experiment, linear graph, clear interaction graph

1. Introduction

In designed industrial experiments, 2-level fractional factorial plans play an important role, since they are both parsimonious in the number of runs and - if designed well allow estimation of effects of interest. In regular 2-level fractional factorial designs, a small number of runs is achieved by starting from a full factorial in a few, say $m-k$, factors and assigning k additional factors to interaction columns in this design. This generates perfect confounding: The 2^{m} effects of the full model with a constant, the main effects and all interactions up to order m can only be estimated as 2^{m-k} sums of 2^{k} effects each, i.e. each effect is perfectly confounded with $2^{k}-1$ other effects. It is often true that interaction effects of more than two factors can be neglected, so that it is not considered problematic if an interaction among three or more factors is confounded with an effect of interest. Thus, it is customary to call effects "clear", if they are not confounded with main effects or 2 -factor interactions (2fis) (cf. e.g. Wu and Chen 1992).

There are many ways of assigning m factors to 2^{m-k} runs. The k factors to be added to the full factorial in $m-k$ factors generate $2^{k}-1$ words (=groups of factors whose interaction is perfectly aliased with the overall mean). The length of the shortest word is called the resolution of the design and is denoted as a roman numeral. Resolution V designs do not confound any main effects or 2fis with each other, in resolution IV designs, 2 fis can be confounded with each other, and resolution III designs even confound main effects with 2 fis.

In this article, like in much of the related literature, it is assumed that interactions of order higher than two are negligible. Under this assumption, resolution V designs are generally considered adequate, if 2 fis are to be estimated. However, they are often not affordable (16 runs for 5 factors, 32 runs for 6 factors, 64 runs for 7 or 8 factors, 128 runs for 9 to 11 factors, 256 runs for 12 to 17 factors). As an aside, note that there are non-regular fractional factorial plans that allow orthogonal estimation of all main effects and two-factor interactions for up to 15 factors in 128 runs or up to 19 factors in 256 runs (cf. e.g. Mee 2009, Chapter 8.2). These are not covered here.

Various authors (e.g. Addelman 1962, Wu and Chen 1992, Ke and Tang 2003, Wu and Wu 2002, Ke, Tang and Wu 2005) have discussed the possibility of devising resolution IV designs such that a pre-specified set of 2fis - called the requirement set in the sequel - can be estimated. While it is often assumed that some 2 fis are negligible, this article will make no such assumption. Instead, the requirement set will always contain all main effects and those 2fis which are of special interest, without any assumption regarding which 2 fis are active. For example, in a robustness experiment with the purpose to find settings of so-called control factors such that the so-called noise factors have as little impact as possible, interactions between control and noise factors may be of special interest, i.e. the requirement set might consist of all main effects and these 2 fis, without necessarily assuming negligibility of other 2 fis. All effects from the requirement set are estimable, if they are "clear", i.e. if they are not confounded with any main effect or 2 fi , and a design that keeps a requirement set clear is called a clear design in the sequel. Clear designs can be of resolution IV, because 2 fis from outside the requirement set need not be clear. This article provides a new type of graphs, clear interaction graphs, and an algorithm that uses these for finding clear designs.

Section 2 gives a concise overview of 2-level fractional factorial designs, their quality criteria and estimability requirements, and introduces clear compromise plans. In Section 3, Taguchi (1988) linear graphs are briefly sketched, and the new "clear interaction graphs" (CIGs) are introduced. Section 4 proposes a simple and usually fast algorithm for finding clear designs based on design catalogues enriched by the CIGs and a subgraph isomorphism search algorithm, while Section 5 presents a catalogue of minimum aberration clear compromise designs that has been derived using the algorithm of Section 4 . Section 6 concludes the article with final remarks.

2. Two-level fractional factorials

2.1. Regular 2-level fractional factorial designs

The starting point for a regular 2-level fractional factorial design for m factors is a full factorial in 2^{m-k} runs for $m-k 2$-level factors, the levels for which are denoted as " -1 " and " +1 ". The model matrix of the saturated model for the full factorial is usually denoted in the so-called "Yates order", which is the obvious continuation of the order 1212313 $23123 \ldots$, if $\mathbf{1}, \mathbf{2}, \mathbf{3} \ldots$ are the m-k base factors of the full factorial. This matrix is called the "Yates matrix" in the following. Its columns consist of " -1 " and " +1 " entries, such that columns for interaction effects are obtained as products of the respective main effect columns, with base factor 1 a sequence of 2^{m-k-1} times the pairs $-1,+1$, base
factor 2 a sequence of 2^{m-k-2} times the quadruples $-1,-1,+1,+1$, base factor 3 a sequence of 2^{m-k-3} times the octuple $-1,-1,-1,-1,+1,+1,+1,+1$, and so forth. Orthogonality of each pair of effects is easily verified by checking that their scalar product is 0 .

Table 1: Generators corresponding to Yates matrix column numbers

	1	2	3	4	5	6	7
	A	B	AB	C	AC	BC	ABC
8	9	10	11	12	13	14	15
D	AD	BD	ABD	CD	ACD	BCD	ABCD
16	17	18	19	20	21	22	23
E	AE	BE	ABE	CE	ACE	BCE	ABCE
24	25	26	27	28	29	30	31
DE	ADE	BDE	ABDE	CDE	ACDE	BCDE	ABCDE
32	33	34	35	36	37	38	39
F	AF	BF	ABF	CF	ACF	BCF	ABCF
40	41	42	43	44	45	46	47
DF	ADF	BDF	ABDF	CDF	ACDF	BCDF	ABCDF
48	49	50	51	52	53	54	55
EF	AEF	BEF	ABEF	CEF	ACEF	BCEF	ABCEF
56	57	58	59	60	61	62	63
DEF	ADEF	BDEF	ABDEF	CDEF	ACDEF	BCDEF	ABCDEF
64	65	66	67	68	69	70	71
G	AG	BG	ABG	CG	ACG	BCG	ABCG
72	73	74	75	76	77	78	79
DG	ADG	BDG	ABDG	CDG	ACDG	BCDG	ABCDG
80	81	82	83	84	85	86	87
EG	AEG	BEG	ABEG	CEG	ACEG	BCEG	ABCEG
88	89	90	91	92	93	94	95
DEG	ADEG	BDEG	ABDEG	CDEG	ACDEG	BCDEG	ABCDEG
96	97	98	99	100	101	102	103
FG	AFG	BFG	ABFG	CFG	ACFG	BCFG	ABCFG
104	105	106	107	108	109	110	111
DFG	ADFG	BDFG	ABDFG	CDFG	ACDFG	BCDFG	ABCDFG
112	113	114	115	116	117	118	119
EFG	AEFG	BEFG	ABEFG	CEFG	ACEFG	BCEFG	ABCEFG
120	121	122	123	124	125	126	127
DEFG	ADEFG	BDEFG	ABDEFG	CDEFG	ACDEFG	BCDEFG	ABCDEFG

There are many different ways to assign k additional (generated) factors to the columns of a Yates matrix with 2^{m-k} rows. Substantial research has been conducted in order to list non-isomorphic regular fractional factorials (cf. e.g. Chen, Sun and Wu 1993, Xu 2009), where two designs are considered isomorphic, if they can be obtained from each other by switching rows or columns or levels within columns. The nonisomorphic regular fractional factorials for m factors in 2^{m-k} runs are usually denoted as m-k.idno with an index number "idno" denoting the different non-isomorphic versions, and lower "idno" expressing better performance on some overall quality criterion. The most important quality criterion is resolution, and designs of equal resolution are ordered w.r.t. the pertinence of the most severe form of aliasing, measured by the socalled word length pattern, which is the frequency table of word lengths. The relevant criterion is called minimum aberration (MA) and makes sure that the number of shortest words is minimal (and successively so for the next shortest words in case of ties). The design catalogues used in this article are ordered by the MA criterion and listed in
terms of Yates matrix column numbers (cf. Table 2 in the appendix). For readers used to generator notation, Table 1 translates the Yates matrix column numbers from Table 2 to generators, in which the base factors are denoted by capital letters. Note that generators can also be directly inferred from the binary representation of the Yates matrix column numbers, by using the positions of " 1 "s from the right as indicators which factors interact; for example, the binary representation of 12 is 1100 , i.e. the third and fourth position from the right imply the interaction CD.

Another overall quality criterion for resolution IV designs is MaxC2, i.e. maximization of the number of clear 2fis. For small designs, MA and MaxC2 often coincide (cf. also Wu and Wu 2002). For large designs, however, there are various situations for which MaxC2 designs are much worse than MA designs in terms of aberration (cf. e.g. Block and Mee 2005). It has been argued that the MA criterion is a good surrogate for model robustness criteria (e.g. Cheng, Steinberg and Sun 1999). The author agrees with this view. Non-MA MaxC2 designs sacrifice some of the model robustness by creating stronger aliasing among the remaining 2 fis. Therefore, it is recommended to use MA as the general quality criterion, and to consider clear 2fis on an as-needed base only, i.e. to only require certain specific 2 fis to be clear, if there is a particular interest in their estimation. This is exactly the purpose of the CIG-based algorithm presented here.

2.2. The role of the requirement set

If some effects are considered particularly interesting, i.e. make up the requirement set for an experiment, this can have different backgrounds. The experimenter may have substantial prior knowledge, which allows to assume all effects outside the requirement set to be negligible. Creation of experimental plans for such situations have been treated by many authors, e.g. Addelman (1962) or Wu and Chen (1992).

In the authors experience, requirement sets often express the focus of interest rather than an assumption of negligibility regarding all effects outside the requirement set. In such situations, it is not advisable to lightheartedly make any negligibility assumptions, apart from the usual negligibility of higher order effects, which may be justifiable. This leads to the need for a clear design, i.e. a design in which the effects from the requirement set are neither aliased with any main effects nor with any 2 fi . A comparison of this "Clear" approach with the approach assuming negligibility of effects outside the requirement set - called the "Distinct" approach - is treated in some detail in Grömping (2010c).

If a clear design is appropriate for the research question at hand, apart from this clearness request, the experimental plan should be as model robust as possible. Following the reasoning of the previous section, the experimental plan should thus be MA among the possible clear designs. In other words, the goal is to find the design with highest resolution and smallest aberration that is able to clearly accommodate the requirement set.

2.3. Clear compromise plans

The m experimental factors are divided into the two groups G 1 and G 2 with m_{1} and m_{2} factors respectively, $m_{1}+m_{2}=m$. For example, in a robustness experiment, G1 might contain control factors and G2 noise factors or vice versa. Four classes of compromise plans have been defined, the requirement sets of which contain all 2fis in

Class 1: G1xG1,
Class 2: G1xG1 and G2xG2,
Class 3: G1xG1 and G1xG2 or
Class 4: G1xG2.
The first three classes were introduced by Addelman (1962), the fourth by Sun (1993). Addelman considered estimability of the specified effects under the assumption that all 2 fis outside the requirement set are negligible. This approach is not pursued here. Instead, interest here is in clear compromise plans which have also been investigated by Ke, Tang and Wu (2005).

Ke et al. proved that there are no clear resolution IV compromise plans of class 2. For the other three classes, they provided lower bounds for the number of runs for a given m_{1}, as well as upper bounds for m_{1} for a given number of runs. Furthermore, they provided a small catalogue of clear compromise plans in 32 and 64 runs for class 3 that can also be used for classes 1 and 4 and can in some cases be adapted to special needs by moving a factor from group G2 to group G1 or simply by omitting factors (their tables 1 and 2). They supplemented this catalogue with a few additional class 4 clear compromise plans (their table 4). Their catalogues do not make any claims w.r.t. quality criteria of the resulting clear compromise plans. Designs that can be obtained from their catalogue directly or by moving or deleting the last factor(s) of a group are shown in bold italics in the tables of MA clear compromise plans in the appendix. It can be seen that almost all their directly catalogued designs are MA, while designs obtained by moving or deleting columns can often be improved upon.

3. Clear interaction graphs

Before introducing the new clear interaction graphs, the well-known Taguchi linear graphs (cf. e.g. Taguchi 1988 for an extensive but incomplete listing) are briefly summarized: linear graphs indicate maximum estimable models for each design. Each main effect is a vertex of the graph; each edge represents a 2 fi that is estimable, if all 2 fis not in the graph as well as all higher order interactions are assumed negligible. There are several linear graphs for any particular design, corresponding to several differently structured requirement sets. Wu and Chen (1992) mentioned the possibility to show edges that represent clear 2fis by a special line type.

For clear designs, as negligibility assumptions for main effects or 2 fis are not permitted. Thus, a more efficient tool can be used: this article proposes an alternative type of graph, the "clear interaction graph" (CIG). There is only one unique CIG for each regular 2 -level fractional factorial design. Again, the factors themselves are the vertices in the graph. The edges are defined by the clear 2 fis, i.e. two vertices are connected by an edge, if and only if the 2 fi of the respective two factors is clear. Thus, any resolution V graph has all pairs of vertices connected by edges, while resolution III
or IV graphs may or may not have edges. Note that the CIG itself does not reveal whether a design is resolution III or IV; usually, resolution III designs should not be considered in CIG applications. It will therefore be assumed throughout this article, that only resolution IV or higher designs are considered.

Figure 1 shows two examples of CIGs: the graph for the MA resolution IV design $9-4.1$ in 32 runs and 9 factors indicates that all interactions of the $9^{\text {th }}$ factor with any other factor are clear, whereas all interactions of both the $9^{\text {th }}$ and the $5^{\text {th }}$ factor with each other and all other factors are clear in the second best design 9-4.2. This implies that design 9-4.2 is usable for a class 3 or class 4 clear compromise plan with $m_{1}=2$ or a class 1 clear compromise plan with $m_{1}=3$. For $m_{1}=1$ or 2 , respectively, the better design 9-4.1 can be used.

Figure 1: Clear interaction graphs for designs 9-4.1 (left) and 9-4.2 (right)
Vertices are labeled with factor numbers (cf. Table 2 for corresponding Yates matrix column numbers).

It is possible to provide CIGs both for an experiment's requirement set and for all catalogued designs. An intended experiment can be accommodated in a particular design, if its graph is contained in the designs graph, i.e. if there is a mapping of the requirement set graph vertices to the design graph vertices such that all edges in the requirement set graph are also present in the design graph. This comparison can be made by a subgraph isomorphism algorithm, which is the reason why the problem has been cast into graph form in the first place.

4. The proposed algorithm for finding clear designs

The algorithm requires that a complete catalogue of designs, ordered from best to worst, is available. In that case, the task of finding the best (resolution IV) design with the required 2 fis clear can be solved by looping through the catalogued (resolution IV) designs from best to worst, and checking for each design whether the requirement set CIG is contained in the design's CIG.

Complete catalogues of designs ordered by the MA criterion exist in the literature (Chen, Sun and Wu 1993; Xu 2009 and the supplementary website). It would be possible to directly base a search algorithm on these published catalogues, calculating each design's CIG as part of the algorithm. However, including the CIGs into the catalogue leads to a substantial speed improvement. As CIGs are unique and can be represented e.g. by a two-row matrix with a column for each edge, the catalogues can easily be extended to include them. This has been done for designs with up to 128 runs for the implementation of the algorithm discussed below. The catalogues also contain the number of clear 2 fis, which can be used to substantially reduce the search space. Obviously, once a complete catalogue of designs is available for the search process, the algorithm will either return the best possible design - after a successful
identification of a subgraph mapping between the experiment graph and the design graph - or will exhaust the catalogue without finding a design which leads to the insight that there is no possibility to accommodate the requirement set within the catalogued designs. In other words, the algorithm is guaranteed to find the best existing design among the catalogued designs. The following two subsections illustrate application of the algorithm and discuss its implementation in a free open-source software by the author.

Note that the algorithm proposed here is very similar to a proposal made by Wu and Chen (1992) on the basis of linear graphs (i.e. making negligibility assumptions for effects outside the requirement set). As linear graphs are not unique and there can be many such graphs for any moderately-sized design, their proposal is much more resource-intensive than the algorithm proposed here.

4.1. A detailed application

The algorithm is now illustrated in detail, using an example by Ke and Tang (2003): Example 1: The 7 experimental factors A:temperature, B:moisture, C:pressure, D:thickness, E:time, F:size and G:speed are to be investigated, and the two interactions temperature*moisture and moisture*time are of special interest. This means that the requirement set consists of all main effects (i.e. a resolution IV design is needed) and the 2 fis $A * B$ and $B^{*} E$. This requirement set defines the CIG in Figure 2.

Figure 2: Requirement set CIG for Example 1
The task of assigning the experimental factors to the appropriate factor numbers of a suitable design now consists in finding the best possible design in the required number of runs for which the graph from Figure 2 is contained in the design's CIG.
The algorithm consists of the following two coarse steps:

1. Select the (next) best (criterion: MA) design that has at least as many clear 2 fis as needed for the requirement set. If no (further) such design is found, declare impossibility of request.
2. Apply a subgraph isomorphism search algorithm (algorithm by Cordella et al. 2001 as implemented in Csardi and Nepusz 2006) in order to identify a mapping of experiment factors to design factors such that the requirement set is clear. If such a subgraph is found, the algorithm returns the solution design. Otherwise go to Step 1.
As a result from the algorithm, the experimenter gains a solution design or the definite answer that the request cannot be fulfilled (within the permitted search designs). In the latter case, the experimenter has to increase the number of runs.

Example 1, continued: The initial goal is to use a 16 run design.
Step 1: There is no resolution IV design in 16 runs and 7 factors with at least two clear 2fis. The algorithm stops with the message that there is no solution.
The experimenter restarts the algorithm with run size increased from 16 to 32.

Step 1 again: The design 7-2.1 is selected as the best design with 2 clear 2 fis. Step 2: The design 7-2.1 has the CIG shown in Figure 3.

Figure 3: CIG for design 7-2.1
Comparison to the requirement set CIG yields many possible mappings of experiment factors to design columns, for example $A=1, B=4, C=3, D=5, E=2$, $\mathrm{F}=6, \mathrm{G}=7$ (as returned by the implementation of the algorithm described below). With this mapping, factors A to G are allocated to columns 1, 8, 4, 16, 2, 7, 27 of the 32 run Yates matrix (cf. Table 2).
If increasing the run size is not feasible, there are of course alternatives: Negligibility assumptions on effects outside the requirement set may be introduced, perhaps combined with a D-optimality approach, or non-regular orthogonal designs may yield a solution (e.g. for 12 to 15 factors in 128 runs or 18 and 19 factors in 256 runs, where non-regular resolution V designs exist, as mentioned in the introduction). In this example, if it appears adequate to assume negligibility of 2 fis outside the requirement set, the requirement set can be accommodated in the 16 run MA design 7-3.1 using the default order of factors. However, this involves the risk of biased estimates, if the negligibility assumption is incorrect.

4.2. Implementation

The above-described algorithm has been implemented in R-package FrF2 (Grömping 2007-2010; as part of the open source programming environment \mathbf{R} (\mathbf{R} development core team 2010). The algorithm uses \mathbf{R}-package igraph (Csardi and Nepusz 2006, based on Cordella 2001) for the subgraph isomorphism checks within each iteration. As mentioned before, the published complete catalogues of nonisomorphic designs by Chen, Sun and Wu (1993, with personal communation by Don Sun regarding the resolution IV 64 run designs) and Xu (2009, with his supplement on the website for resolution IV 128 run designs up to 24 factors) have been enhanced by attaching its CIG and the number of clear 2fis to each design and serve as the basis for the search. Complete catalogues for up to 64 runs are part of the software itself. For 128 runs, the complete catalogue is too large to be included into the software; the software contains a few promising designs only (including all the ones needed for the MA clear compromise designs catalogued in this article), while the complete CIGenhanced catalogue for up to 24 factors is distributed with the separate \mathbf{R} package FrF2.catlg128 (Grömping 2010b; the package links to the author's website for the 24 factor catalogue).

5. Complete catalogue of smallest MA clear compromise designs

The CIG-based algorithm of the previous section has been used for creating a catalogue of clear compromise designs. Previously-published catalogues of compromise designs (Addelman 1962 for distinct designs, Ke et al. 2005 for clear designs) gave a small selection of designs for maximum values of m_{1}, together with instructions how to obtain further designs from these. Here, complete catalogues of clear compromise designs for designs with up to 24 factors in 128 runs are provided. These have been created using the algorithm from the previous section. Ke et al.'s (2005) bounds have been used for limiting the search for clear compromise plans to possible candidate designs.

The complete catalogue is presented in four tables in the appendix. Table 2 holds all base designs with their respective Yates matrix columns. Tables 3,4 and 5 provide the complete listings of resolution IV clear compromise designs of the three classes for which such designs exist. These tables indicate, which factors of the respective base design belong to G1; Table 2 can be used for translating the column numbers from Tables 3 to 5 to Yates matrix columns.

5.1. Usage examples

Table 4 shows that the smallest MA 16 factor clear compromise plan of class 3 with $m_{1}=2$ can be obtained from the design $16-10.45$ in $2^{16-10}=64$ runs using its columns 6 and 16. According to Table 2, these correspond to Yates matrix columns 32 and 60 for the G1 factors and Yates matrix columns 12481671113141921222526 for G2. The design entry is set in bold italics, which indicates that an isomorphic design can also be obtained from Ke et al. (2005) by omitting the last G2 factor. The design has 77 words of length 4, which leads to quite heavy confounding (14 model matrix columns hold 62 fis each, one holds 7 2fis). If a larger design can be afforded and is desired, the footnote to Table 4 indicates that the 128 run design 16-9.2 could be used with G1 columns 4 and 5, which corresponds to Yates matrix columns 8 and 16 for G1 and the remaining Yates matrix columns of the design for G2.

Let us now consider the analogous smallest MA class 1 clear compromise plan with 16 factors and $m_{1}=3$: according to Table 3 the MA design is based on the base design 16-10.8 and uses its columns 6, 13 and 16 for G1, which translates into Yates matrix columns 32,25 and 63 . This design has better aberration than the one obtainable from Ke et al. (2005). Nevertheless, it is still heavily confounded regarding some 2fis. If a 128 run design is desired for reducing the degree of confounding, the overall MA design 16-9.1 can be used, as it is listed further to the right in the table row for 16 factor designs: an MA clear class 1 compromise design in 128 runs for 16 factors with $m_{1}=3$ can be obtained from 16-9.1 using its columns 2,3 and 5 for $G 1$ (i.e. moving one column from G1 to G2 from the design with $m_{1}=4$). Within Tables 3 and 4, it is always permitted to move factors from G1 to G2, as was also stated by Ke et al. (2005) for their corresponding tables 1 and 2. Beware that this is not true for Table 5, where for example the design for 10 factors with $m_{1}=4$ can be based on the overall MA design

10-4.1, while $m_{1}=3$ requires using the design 10-4.3, which has worse aberration (cf. also the following section).

5.2. Observations regarding MA clear designs

The smallest MA designs in most cases require half the run size of a resolution V design. In some cases, designs with only a quarter of the runs of a resolution V design can also be used. For the latter cases, it may sometimes be desirable to double the run size for reducing the severity of confounding. In most such cases, the MA clear design can be obtained from the overall MA design in the doubled run size, e.g. from 16-9.1 in the class 1 example from the previous section. Often, this design is listed further to the right in Tables 3 and 4, in which case the MA column allocation for it can be obtained by moving one or more G1 column(s) to G2, as was the case for the class 1 example above. Where a larger MA design cannot be obtained in this way (some cases for Table 4, and all cases for Table 5), footnotes indicate how to allocate G1 factors, like in the class 3 example of the previous section.

For clear class 4 compromise plans, it is not permitted to move factors between G1 and G2, which is due to the absence of requirements regarding estimability of 2fis within G1. Consequently, there is no monotonicity in terms of m_{1} : for example, the overall MA design in 10 factors in 64 runs (10-4.1) can accommodate a clear class 4 compromise plan for $m_{1}=2$ or $m_{1}=4$, but not for $m_{1}=3$: The design has two nonoverlapping words of length 4 . Choosing all $m_{1}=4$ factors for G 1 from the same 4-letter word, the design can be used as a clear compromise plan of class 4 for $m_{1}=4$, since all confounding is within G1 and within G2 only. When omitting one of these factors from G1, its interaction with the other three becomes important, and the design is not a clear class 4 compromise design for $m_{1}=3$. A G1 with $m_{1}=2$ factors can again be accommodated within this design, because there are two factors (positions 4 and 10) that do not occur in the two 4-letter words and thus have all their 2fis clear.

The designs that can also be obtained from Ke et al. (2005) have been set in bold italics in Tables 3 to 5 . It can be seen that the larger MA designs catalogued here are in most cases better than those obtainable from Ke et al. The difference in aberration can sometimes be large, e.g. for a class 1 design with 12 factors and $m_{1}=2$, where the Ke et al. design obtained from their 17 run class 3 design by omitting the last 5 G2 columns would result in 18 words of length 4, as opposed to only six such words in the design catalogued here. For other cases, the difference is slight, for example for the class 3 design in 13 factors with $m_{1}=2$, where the design obtainable from the Ke et al. instructions has 26 words of length 4 as compared to 25 such words for the MA design.

Class 3 compromise plans are also class 4 . As the class 3 requirement set is larger, the MA clear class 3 compromise plan is of course not necessarily MA for class 4. However, class 3 and class 4 MA clear compromise plans often coincide. Deviations occur in particular for relatively large values of m_{1}, because - as has been discussed above - there may be designs with confounded interactions within both G1 and G2 but clear interactions between groups. Class 3 compromise plans are also class 1. Alternatively, one can obtain a class 1 compromise plan with m_{1} increased by one vs. a corresponding class 3 plan by moving one factor from G 2 to G 1 . A comparison of

Tables 3 and 4 shows that MA clear class 1 compromise plans can often achieve better aberration than the corresponding class 3 plans.

6. Final remarks

Clear interaction graphs (CIGs) have been introduced, and an algorithm based on complete catalogues of CIGs has been proposed that is guaranteed to find the best existing clear design among the catalogued designs. Section 4.2 details an implementation of the algorithm for general use and indicates for which scenarios it has been implemented. The software is guaranteed to find the best existing resolution IV clear design with up to 64 runs or - if additional catalogues ordered by the MA criterion are available, the best existing clear design within those, for example with the additional complete catalogues for 128 run resolution IV designs with up to 24 factors provided in Grömping (2010b).

The FrF2 implementation of the algorithm has been used for creating a complete catalogue of smallest MA clear compromise designs with up to 128 runs and 24 factors. This work serves as a demonstration of the usefulness of the CIGs and the CIG-based algorithm. On the other hand, the work on the catalogue has also been used to improve the software: those base designs that have shown up as yielding MA clear compromise designs should be generally useful for finding clear designs, even if no perfect compromise design is sought. The 128 run clear compromise plans from the catalogue in Tables 3 to 5 are based on 68 different base designs, 30 of which were not originally part of the selection of 128 run designs included in the software. They have been added to the software, which should also improve the chances for automatically finding better designs for general requirement sets. At the very least, the thus-enhanced software will automatically find all MA clear compromise designs catalogued in this article, without loading the additional complete catalogue of 128 run resolution IV designs.

Finally, apart from the CIGs and the proposed algorithm, the catalogue of clear compromise plans is of interest in its own right, as there are practical situations for which the experimental factors naturally fall into two groups with a certain pattern of 2 fis being of interest. For example, in the robustness scenario mentioned in the introduction, control factors and noise factors are a natural choice for the two groups G1 and G2. The interactions between these two groups will be particularly interesting. Nevertheless, one may not be willing to assume negligibility of other interactions. In this case, a class 4 clear compromise design might be adequate. One may also want to estimate interactions among control factors, which will imply a class 3 clear compromise design, whenever one is not willing to assume negligibility of the 2fis among noise factors. Many other such situations are conceivable. Therefore, the catalogue of MA clear compromise designs can be quite useful for practitioners.

References

Addelman, S. (1962). Symmetrical and asymmetrical fractional factorial plans. Technometrics 4, 47-58. Block, R.M. and Mee, R.W. (2005). Resolution IV designs with 128 runs. J. Quality Technology 37, 282293. With correction 2006, J. Quality Technology 38, 196.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993). A catalogue of 2-level and 3-level orthogonal arrays. International Statistical Review 61, 131-145.
Cheng, C.S., Steinberg, D.M. and Sun, D.X. (1999). Minimum aberration and model robustness for twolevel fractional factorial designs. J. Roy. Statist. Soc. B 61, 85-93.
Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. (2001). An improved algorithm for matching large graphs, Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition, 149-159.
Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research, InterJournal Complex Systems 1695 (http://igraph.sf.net).
Grömping, U. (2007-2010). FrF2: Package for analysing Fractional Factorial designs with 2-level factors. R package version 1.1-1 (http://cran.r-project.org/web/packages/FrF2/index.html). In R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Grömping, U. (2010b). FrF2.catlg128: Complete catalogues of resolution IV 128 run 2-level fractional factorials up to 24 factors. R package version 1.0 (http://cran.rproject.org/web/packages/FrF2.catlg128/index.html). In R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Grömping, U. (2010c). Clear and distinct designs: two approaches for fractional factorial designs with some estimable two-factor interactions. Reports in Mathematics, Physics and Chemistry 2/2010, Beuth University of Applied Sciences, Berlin, Germany.
Ke, W. and Tang, B. (2003). Selecting 2^{m-p} Designs Using a Minimum Aberration Criterion When Some Two-Factor Interactions Are Important. Technometrics 45, 352-360.
Ke, W.,Tang, B. and Wu, H. (2005). Compromise plans with clear two-factor interactions. Statistica Sinica 15, 709-715.
Mee, R.W. (2009). A comprehensive guide to factorial two-level experimentation. Springer, Berlin.
R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org)
Sun, D.X. (1993). Estimation capacity and related topics in experimental designs. Ph.D. Dissertation, University of Waterloo, Waterloo.
Taguchi, G. (1988). Systems of experimental design (2 volumes, editor for English edition, Don Clausing). Quality Resources \& American Supplier Institute, Dearborn, Michigan.
Wu, C.F.J., Chen, Y. (1992). A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34, 162-175.
Wu, H. and Wu, C.F.J. (2002). Clear two-factor interactions and minimum aberration. Annals of Statistics 30, 1496-1511.
Xu, H. (2009). Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes. Technometrics 51, 262-277.

Appendix: Tables of catalogues

Table 2: Resolution IV regular* base designs used in at least one clear compromise design (from the catalogues by Chen, Sun and Wu 1993 or Xu 2009, a personal communication by Don Sun (64 runs) and the web supplement to Xu 2009)

$\begin{aligned} & \text { Design } \\ & m-k . n o . \end{aligned}$	$\begin{gathered} \text { Runs } \\ 2^{m-k} \end{gathered}$	Column numbers of factors 1 to m in Yates matrix
7-2.1	32	124816727
8-3.1	32	12481671129
9-4.1	32	1248167111929
9-4.2	32	1248167111330
9-3.1	64	1248163272745
10-4.1	64	124816327274353
10-4.3	64	124816327112951
11-5.1	64	12481632711294551
11-5.4	64	12481632711214656
11-5.6	64	12481632711192962
12-6.1	64	1248163271129455162
12-6.2	64	1248163271121465456
12-6.4	64	1248163271121415456
12-6.23	64	1248163271121253145
12-5.1	128	1248163264311034385121
13-7.1	64	124816327112125385860
13-7.3	64	124816327111929375962
13-7.6	64	124816327111930374152
13-7.34	64	124816327111319212546
13-6.1	128	12481632643110343854486
13-6.6	128	12481632643110343854489
14-8.1	64	12481632711193037414960
14-8.4	64	12481632711193037415256
14-8.7	64	12481632711192937414749
14-8.40	64	12481632711131419212554
14-7.1	128	12481632643110343854661114
14-7.3	128	1248163264311034385466167
14-7.5	128	1248163264311034385448613
14-7.14	128	12481632643110343497462109
14-7.71	128	12481632643110343851211314
14-7.94	128	12481632643110343854489113
15-9.3	64	1248163271119293741474955
15-9.9	64	1248163271113192125353763
15-9.40		1248163271113141921222558
15-8.1	128	1248163264311034385466111467
15-8.3	128	1248163264311034385466111413
15-8.10	128	124816326431103438544868855
15-8.34	128	124816326431103438544861397
15-8.78	128	1248163264311034349784562105
15-8.150	128	1248163264311034385448257113
15-8.423	128	1248163264311034385121131422
15-8.1221	128	12481632643110343854489113125
16-10.2	64	124816327111929374147495559
16-10.8	64	124816327111314192125353763
16-10.45	64	124816327111314192122252660
16-9.1	128	124816326431103438544868853110
16-9.2	128	124816326431103438546611146778
16-9.80	128	12481632643110343854486885556
16-9.890	128	124816326431103438544825711389
16-9.1261	128	124816326431103438546616770105
16-9.1413	128	12481632643110343854656887955

Table 2, continued

$\begin{aligned} & \hline \text { Design } \\ & m-k . n o . \end{aligned}$	$\begin{gathered} \text { Runs } \\ 2^{m-k} \end{gathered}$	Column numbers of factors 1 to m in Yates matrix*
16-9.2913	128	124816326431103438512113142219
16-9.5539	128	12481632643110343851422131926
17-11.2	64	12481632711192937414749555962
17-11.7	64	12481632711131419212225353763
$\begin{aligned} & 17-11.6= \\ & 17-11.38^{\star *} \end{aligned}$	64	12481632711131419212225262863
17-10.1	128	124816326431103438546611146778116
17-10.1036	128	1248163264311034385448688555679
17-10.2407	128	124816326431103438544825711389105
17-10.5846	128	124816326431103438546616770105108
17-10.5924	128	12481632643110343854656887955104
17-10.9040	128	12481632643110343851211314221926
17-10.12633	128	1248163264311034385142213192628
18-11.1	128	124816326431103438546611146778116121
18-11.23	128	124816326431103438544868853387998
18-11.95	128	124816326431103438546611146778116105
18-11.5146	128	1248163264311034385448688555679104
18-11.6381	128	124816326431103438544825711389105123
18-11.14398	128	12481632643110343854656887955104112
18-11.18050	128	1248163264311034385121131422192628
19-12.1	128	124816326431103438546611146778555886
19-12.2	128	124816326431103438546611146778555897
19-12.10	128	1248163264311034385448254568878123125
19-12.488	128	12481632643110343854486251055810654114
19-12.9648	128	124816326431103438544825711389105123125
19-12.11319	128	12481632643110343814549118739456104127
19-12.12482	128	1248163264311034385448688555679104112
19-12.26381	128	1248163264311034345874688555679104112
20-13.1	128	12481632643110343854661114677855588691
20-13.2	128	124816326431103438546611146778555897108
20-13.11	128	1248163264311034385448254568878123125104
20-13.43452	128	1248163264311034381449321131949142528
20-13.47458	128	1248163264311034345874688555679104112127
21-14.1	128	124816326431103438544825456887812312510425
21-14.4	128	1248163264311034385448688537858839728104
21-14.8	128	1248163264311034385448254568878123125104113
21-14.68031	128	124816326431103438144932113194914252861
22-15.1	128	1248163264311034385448688537858839728104114
22-15.7	128	1248163264311034385448688537858839728104112
22-15.8509	128	12481632643110343497412476184136782376294
22-15.118181	128	12481632646371251043041781121549119862311197
23-16.1	128	12481632643110343854482545688781231251042511249
23-16.8	128	12481632643110343854486885338587983124114123106
23-16.5532	128	1248163264311034349741247941450121100881122161
23-16.172917	128	1248163264637125104304178112154911986231119746
24-17.2	128	1248163264311034385448688533858798311012497104114
24-17.4	128	12481632643110343854486885338587983124114123106113
24-17.4552	128	124816326431103434974124794145012110088112216113
24-17.256531	128	124816326463712510430417811215491198623111974639

* There are also non-regular resolution V designs, indicated by footnotes in the following tables. These have not been considered for the catalogues.
** The design is called 17-11.6 in the Chen, Sun and Wu catalogue in the paper, but 17-11.38 in the complete enumeration of 64 run resolution IV designs as obtained from the authors (personal communication with D.X.Sun). Numbering in the paper reflects some trade-off choices by the authors regarding MA and MaxC2 criteria, numbering in the complete listing is strictly in terms of MA.

Table 3: Catalogue of smallest MA class 1 clear compromise designs (no entry ${ }^{i}$: resolution V needed) ${ }^{\text {ii, iii }}$
Cell entries: design and choice of design columns for G1

	2	3	4	5	6	7	8	9	10
7 factors	7-2.1	7-2.1	7-2.1						
	14	145	1457						
8 factors	8-3.1	8-3.1							
	15	158							
9 factors	9-4.1	9-4.2	9-3.1	9-3.1	9-3.1				
	19	159	1456	14568	145689				
10 factors	10-4.1	10-4.1	10-4.1	10-4.3					
	14	145	14510	156910					
11 factors	11-5.1	11-5.1	11-5.4						
	15	1511	68910						
12 factors ${ }^{\text {IV }}$	12-6.1	12-6.2	12-5.1	12-5.1	12-5.1	12-5.1	12-5.1	12-5.1	
	15	689	1234	12345	123456	1234567	123456710	12345671011	
13 factors ${ }^{\text {IV }}$	13-7.1	13-7.6	13-6.1	13-6.1	13-6.1	13-6.1	13-6.6		
	46	41013	1357	13578	135789	13578910	123578910		
14 factors ${ }^{\text {IV }}$	14-8.1	14-8.7	14-7.1	14-7.1	14-7.3	14-7.3	14-7.94		
	110	51013	1245	12457	1458911	457891112	123578910		
15 factors ${ }^{\text {IV }}$	15-9.3	15-9.9	15-8.1	15-8.1	15-8.34	15-8.1221	15-8.1221		
	110	61215	1456	145611	45791013	1235789	123578910		
16 factors	16-10.2	16-10.8	16-9.1	16-9.2	16-9.1261				
	110	61316	2358	145611	4578911				
17 factors	17-11.2	17-11.7	17-10.1	17-10.1	17-10.5846				
	110	61417	1458	14589	4578911				
18 factors ${ }^{\text {v }}$	18-11.1	18-11.1	18-11.23	18-11.95	?	?	?	$?$	$?$
	14	145	25910	14589					
19 factors ${ }^{\text {v }}$	19-12.1	19-12.2	19-12.488	?	?	$?$	$?$	$?$	$?$
	14	189	18912						
20 factors	20-13.1	20-13.2	?	?	?	?	?	?	$?$
	14	4515							
21 factors	21-14.1	21-14.4	?	?	$?$?	?	?	$?$
	12	2617							
22 factors	22-15.1	22-15.7	?	?	?	$?$?	$?$	$?$
	112	2617							
23 factors	23-16.1	23-16.8	?	?	?	$?$?	$?$	$?$
	12	259							
24 factors	24-17.2	24-17.4	?	?	?	?	?	?	$?$
	112	259							

Table 4: Catalogue of smallest MA class 3 clear compromise designs (no entry': resolution V needediii,vi
Cell entries: design and choice of design columns for G1

	1	2	3	4	5	6	7	8
7 factors	7-2.1	7-2.1	7-2.1					
	4	45	457					
8 factors	8-3.1	8-3.1						
	5	58						
9 factors	9-4.1	9-4.2	9-3.1	9-3.1	9-3.1			
	9	59	456	4568	45689			
10 factors	10-4.1	10-4.1	10-4.3	10-4.3				
	4	410	569	56910				
11 factors	11-5.1	11-5.6	11-5.6					
	11	610	61011					
12 factors ${ }^{\text {IV }}$	12-6.4	12-6.23	12-5.1	12-5.1	12-5.1	12-5.1	12-5.1	12-5.1
	11	612	234	2345	23456	234567	23456710	2345671011
13 factors ${ }^{\text {IV }}$	13-7.3	13-7.34	13-6.1	13-6.1	13-6.1	13-6.6	13-6.6	
	10	613	578	5789	578910	125789	12578910	
14 factors ${ }^{\text {IV }}$	14-8.4	$14-8.40{ }^{\text {viII }}$	14-7.5	14-7.71	14-7.94	14-7.94	14-7.94	
	10	614	7910	671011	12578	125789	12578910	
15 factors ${ }^{\text {IV }}$	15-9.3	$15-9.40{ }^{\text {VIII }}$	15-8.150	15-8.423	15-8.1221	15-8.1221	15-8.1221	
	10	615	189	671011	12578	125789	12578910	
16 factors	16-10.2	16-10.45 ${ }^{1 \times}$	16-9.890	16-9.2913	16-9.5539			
	10	616	189	671011	6791011			
17 factors	17-11.2	17-11.38 ${ }^{\text {x }}$	17-10.2407	17-10.9040	17-10.12633			
	10	617	189	671011	6791011			
18 factors ${ }^{\text {V }}$	18-11.1	18-11.1	18-11.6381	18-11.18050	?	?	?	?
	4	45	189	671011				
19 factors ${ }^{\text {V }}$	19-12.10	19-12.9648	19-12.9648	?	?	?	?	?
	1	18	189					
20 factors	20-13.11	20-13.43452	?	?	?	?	?	?
	1	910						
21 factors	21-14.8	21-14.68031	?	?	?	?	?	?
	1	910						
22 factors	22-15.8509	22-15.118181	?	?	?	?	?	?
	10	23						
23 factors	23-16.5532	23-16.172917	?	?	?	?	?	?
	10	23						
24 factors	24-17.4552	24-17.256531	?	?	?	?	?	?
	10	23						

Table 5: Catalogue of smallest MA class 4 clear compromise designs (entry V^{i} : resolution V needed) ${ }^{\text {iii, xi }}$
Cell entries: design and choice of design columns for G1
W.l.o.g., G1 is assumed to be the smaller of the two sets G1 and G2. For larger G1, switch roles of G1 and G2.

${ }^{i}$ Designs with "?" entries require at least 256 runs; the actual run size is unknown (because a graph-enhanced complete catalogue of resolution IV 256 run designs is not available).
${ }^{\text {ii }}$ The actual run size is larger than the Ke et al. (2005) lower bound for the following combinations (numbers of factors with G1 sizes in parentheses): 10 and 11(1), 12(3 to 5), 13(3 to 4), 14(3), 18 to 22(1), 18 (6 to 8), 19 (5 to 7), 20 and 21 (4 to 6), 22 and 23 (4 to 5), 24(4). Whenever the lower bound is 256 and a resolution V design is not possible, the actual run size is not known.
${ }^{\text {iii }}$ Designs in bold italics can also be obtained from the Ke et al. (2005) article (up to isomorphism).
${ }^{\text {iv }}$ For 12 to 15 factors, there is an irregular resolution V design in 128 runs (cf. e.g. Mee 2009, Section 8.2). This can of course be used as well.
${ }^{v}$ For 18 and 19 factors, there is an irregular resolution V design in 256 runs (cf. e.g. Mee 2009, Section 8.2). This can of course be used as well.
${ }^{\text {vi }}$ The actual run size is larger than the Ke et al. (2005) lower bound for the following combinations (numbers of factors with G1 sizes in parentheses): 8(3), 10 (1 and 5), $11(1,4,5), 12(3$ to 5$), 13(3,4,8), 14$ (3 and 8), 15(8), 16 and 17 (6 to 8), 18 to 22 (1), 18 (5 to 7), 19 (4 to 6), 20 and 21 (3 to 5), 22 (3 and 4). Whenever the lower bound is 256 and a resolution V design is not possible, the actual run size is not known.
vii 14-7.1 would do it with its columns 4 and 5 for G1.
viii 15-8.1 would do it with its columns 4 and 5 for G1.
${ }^{\text {ix }} 16-9.2$ would do it with its columns 4 and 5 for G1.
${ }^{x} 17-10.1$ would do it with its columns 4 and 5 for G1.
${ }^{\text {xi }}$ The actual run size is larger than the Ke et al. (2005) lower bound for the following combinations (numbers of factors with G1 sizes in parentheses): 10,11(1), 12(3 to 5), 13(3,4), 14(3), 16 to 19 (7+), 18 to 22(1), 20 to 22(3 to 5), 23 to 24 (3 to 4). Whenever the lower bound is 256 and a resolution V design is not possible, the actual run size is not known.
xii $9-3.1$ would do it with its columns 4 and 5 for G 1 .
xiii 12-5.1 would do it with its columns 2, 23 , or 1348912 for G1.
xiv $13-6.1$ would do it with its columns 5 and 7 for G1.

